<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>新規な効果の影響を考慮した3量子共鳴における2レベルNMRシステム</td>
</tr>
<tr>
<td>著者</td>
<td>Hatanaka, Hiroshi; Tabuchi, Noriyuki</td>
</tr>
<tr>
<td>発行年</td>
<td>2002</td>
</tr>
<tr>
<td>タイプ</td>
<td>Journal Article</td>
</tr>
<tr>
<td>テキスト版</td>
<td>自作</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2297/11770</td>
</tr>
</tbody>
</table>

金沢大学学術情報リポジトリ

KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。
KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。
著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。

http://dspace.lib.kanazawa-u.ac.jp/dspace/
New Line-Narrowing Effect in Triple-Quantum Resonance
in a Two-Level NMR System

Hiroshi Hatanaka and Noriyuki Tabuchi*

Department of Physics, Faculty of Education, and *Graduate School of
Natural Science and Technology, Kanazawa University, Kanazawa 920-1192,
Japan.

(Received)

Running title: line-narrowing in triple-quantum resonance

Address for manuscript corresponding: Hiroshi Hatanaka

Faculty of Education, Kanazawa University, Kakuma, Kanazawa City,
Japan, 920-1192.

e-mail: hatanaka@ed.kanazawa-u.ac.jp
Abstract

We report a new line-narrowing effect associated with triple-quantum resonance in a two-level NMR system. The experiment was carried out in the rotating frame on 19F nuclei in Teflon; namely, the magnetization is spin-locked along the RF field and the triple-quantum resonance is induced by the oscillating field perpendicular to the RF field. We observed that the decay time of the triple-quantum nutation becomes extraordinarily long at a particular intensity and frequency of the oscillating field. The decay time is about seven times as long as that of the single-quantum nutation and also much longer than that of the magic angle nutation. The mechanism is not interpreted by straightforward analogy to the theory of the current magic angle narrowing.

Key Words: multiple-quantum NMR; line narrowing; double resonance; magic angle nutation; 19F resonance in Teflon.
Various novel effects have been observed in the field of multiple-quantum NMR (1). In this paper, we report for the first time, to our knowledge, a new line-narrowing effect in the triple-quantum (TQ) resonance in a two-level NMR system. The experiment was carried out on 19F nuclei in Teflon in the rotating frame; namely, the magnetization is first aligned along the resonant RF field with intensity ω_1/γ (γ; gyromagnetic ratio) by a standard spin-locking technique (2) and the TQ resonance in the rotating frame is induced by a low-frequency (LF) oscillating field perpendicular to the RF field. Experimentally, the LF field is effectively produced by a phase modulation (PM) of the RF field. As is well known a sinusoidal PM at an angular frequency ω_2 with modulation index $2\phi_m$ produces a virtual oscillating magnetic field at ω_2 with amplitude $2\phi_m\omega_2/\gamma$ perpendicular to the RF field in the phase-modulated rotating frame.

What we observed is as follows. When $\omega_2/2\pi = 26.45$ kHz (which is slightly higher than the TQ resonance frequency $\omega_1/2\pi$) and $2\phi_m = 0.764\pi$ rad ($\phi_m\omega_2$ is not so small compared to ω_1), the decay of the TQ transient nutation becomes extraordinarily long as shown by the dotted curve in Fig.1. The line narrowing is most remarkable at these values of ϕ_m and ω_2. The solid line in Fig.1 is a single-quantum (SQ) nutation signal obtained when $\omega_2/2\pi=66$ kHz ($\approx \omega_1/2\pi$), and the dashed line is a spin-lattice relaxation curve in the rotating frame observed with the same RF intensity. The decay time of the TQ nutation (≈ 1.8 ms) is about seven times as long as that of the SQ nutation (≈ 260 μs), and is compared with the spin-lattice relaxation time in the rotating frame (≈ 6.5 ms). It is noteworthy that the decay time of the TQ nutation is also much longer than that of the magic angle rotary echo envelope.
observed in Teflon (3).

As will be shown below, the long decay results from the disappearance of the secular dipole Hamiltonian in the TQ resonance and also the considerable decrease of the effects of the nonsecular part. This effect is not interpreted by straightforward analogy to that of the current magic angle nutation (4,5).

We consider like spins $I (=\Sigma I_j)$ which are spin-locked by the exactly resonant RF field at the angular frequency ω_0 and affected by the magnetic dipole interaction described by the Hamiltonian $hH_{d}^{(0)} = \Sigma D_{jk} (3I_jzI_kz-I_jI_k)$, where D_{jk} is a geometrical factor of a well-known form (6). The total Hamiltonians $H_j(t)$ ($j = 0 \sim 7$) and a series of unitary transformations necessary for the explanation are shown in Table 1. The magnitude $\phi_m\omega_2$ is not sufficiently weak compared to ω_1. We first transform the Hamiltonian $H_0(t)$ to $H_2(t)$ in the phase-modulated and tilted rotating frame with the unitary operators U_1 and U_2. For the TQ resonance in the two-level system to occur, the existence of the counterrotating field contained in the LF field is necessary (7) because of the angular momentum conservation. The counterrotating field also induces level shifts; the resonance frequency increases as $\phi_m\omega_2$ increases (7,8). In order to take into account the contribution of the counterrotating field, we transform the Hamiltonian $H_2(t)$ to that in the reference frame rotating at ω_2 around the RF field in the reverse sense to the nuclear precession (9,10). Then, the transformed Hamiltonian $H_3(t)$ is furthermore transformed to $H_5(t)$ in the reference frame rotating at $2\omega_2$ in the same sense to the nuclear precession around the resultant effective field $\omega_e/\gamma = [(\omega_1+\omega_2)^2+(\phi_m\omega_2)^2]^{1/2}/\gamma$, where the effective field ω_e/γ is at an angle $\theta = \arccos[(\omega_1+\omega_2)/\omega_e]$ with the RF
field. In the reference frame rotating simultaneously at ω_2 and $2\omega_2$, there exists a field of the amplitude $\phi_m\omega_2\sin\theta/\gamma$ oscillating at $2\omega_2$ along the effective field ω_e/γ together with the static field $\omega_2^*/\gamma = \{(\omega_2-2\omega)\}^2+[\phi_m\omega_2\sin(\theta)]^2/\gamma$, which is at an angle $\alpha = \arccos[(\omega_2-2\omega)/\omega_2^*]$ with the effective field ω_e/γ.

The TQ resonance is induced by the component of this oscillating field perpendicular to the static field ω_2^*/γ in this rotating frame, when $2\omega_2 \simeq \omega_2^*$ (see H_6). We limit ourselves to the case

$$\omega_2 = \boxdot \omega_2^*.$$ \[1\]

The frequency ω_2 that satisfies Eq.[1] is the exact TQ resonance frequency including level shifts, which is denoted by ω_{20} hereafter. Although the explicit expression of ω_{20} is complicated because ω_2^* is a function of ω_2, Eq.[1] shows that for $\phi_m=0$, $\omega_{20} = \boxdot \omega_1$, and for $\phi_m \neq 0$, $\omega_{20} > \boxdot \omega_1$, and ω_{20} increases as $\phi_m\omega_2$ increases. The amplitude of the resonant component $(\phi_m\omega_2\sin\theta\sin\alpha)/\gamma$ in $H_6(t)$ is so small that its counterrotating field can be neglected. The TQ nutation at $\omega_2 = \omega_{20}$ is described by the Hamiltonian H_7, neglecting the time-dependent part of $H_a(t)$. The time-independent part of $H_a(t)$ is denoted by \overline{H}_a. The TQ nutation decay is predominantly governed by the secular part \overline{H}_d which is the part of \overline{H}_a that commutes with I_x. The explicit expression of \overline{H}_d is

$$\overline{H}_d = \sum_{j,k} D_{jk} \sqrt{6} \sum_{l=-2}^{2} \sum_{m=-2}^{2} \sum_{n=-2}^{2} \sum_{s=-2}^{2} T^{(jk)}_{2s} d_{20}^{2}(\frac{\pi}{2}) d_{0n}^{2}(\frac{\pi}{2}) d_{mn}^{2}(\frac{\pi}{2})$$

\[3\]

$$= K \sum_{j,k} D_{jk} (3I_{j,k}I_{k} - I_j I_k),$$ \[2\]
with
\[
K = \frac{1}{16} (3 \cos^2 \alpha - 1)(3 \cos^2 \theta - 1) - \frac{3}{64} \sin 2\alpha (3 \sin 2\theta + 2 \sin \theta) \\
+ \frac{3}{32} \sin \alpha (3 \sin 2\theta - 2 \sin \theta) - \frac{3}{32} (1 - \cos \alpha)^2 \sin^2 \theta.
\]
[3]

Numerical evaluations of K as a function of $\phi_m\omega_2$ (ω_20 is also a function of $\phi_m\omega_2$) indicate that K becomes 0 at $\cos \theta \approx 0.9476$ and $\cos \alpha \approx 0.8236$ independent of ω_1. The value of ω_20 for $K = 0$ depends on ω_1, and for $\omega_1/2\pi = 65$ kHz, $\omega_20/2\pi$ becomes ≈ 26.46 kHz at $K = 0$. Since the angles θ and α for $K \approx 0$ are not large, the TQ nutation can be fully observed through an oscillation of the magnetization M along the RF field.

In the experiment, we searched TQ resonance including level shifts by varying ω_2 and ϕ_m. The longest decay time was observed at $\omega_2/2\pi = 26.45$ kHz and $2 \phi_m = 0.764\pi$ rad as shown by the dotted curve in Fig.1. The corresponding values of θ and α are almost equal to the theoretical values for $K = 0$. The TQ nutation frequency $(\phi_m\omega_2 \sin \theta \sin \alpha)/2\pi$ (2.99 kHz) calculated with the values of ω_2 and ϕ_m is in good agreement with the oscillation frequency (2.83 kHz) estimated from the dotted curve. Thus, the TQ nutation in Fig.1 represents the behavior at the exact TQ resonance including level shifts almost at $K = 0$.

As ω_20 deviates from the value for $K = 0$ the nutation decay time (at $\omega_2 = \omega_20$) decreases as shown by the dots in Fig.2, where an exponential decay ($e^{-t/\tau}$) is assumed. The solid line shows the theoretical dependence of the value of $|K|$ on ω_20. The experimental result in Fig.2 indicates that the decay is due mainly to the dipole interaction represented by Eq.[2]. The result that the decay time T around $\omega_20/2\pi = 26.46$ kHz is not so long as is expected from the
theoretical curve may be due to the influences of the dipole interaction represented by the nonsecular part \(H_d^{\dagger} = \overline{H_d} - H_d^\dagger \) (3) and the spin-lattice relaxation in the rotating frame. (The effect of the inhomogeneity in \(\phi_m\omega_2 \) can be neglected because a sample whose volume was about 1/80 of that of the sample coil was used.) The fact that the decay time near \(K = 0 \) is much longer than that of the current magic angle nutation (3) may be explained by comparing the explicit forms of \(H_d^{\dagger} \) and the corresponding dipole Hamiltonian in the magic angle nutation. In both cases the nonsecular dipole Hamiltonians consist of two terms written as \(A\Sigma D_{jk}(I_j I_k - I_j I_k) \) and \(B\Sigma D_{jk}(I_j I_k I_I + I_j I_k I_k) \). The values of \(|A|\) and \(|B|\) in \(H_d^{\dagger} \), which are complicated functions of \(\theta \) and \(\alpha \), become \(\approx 2.4 \times 10^{-3} \) and \(\approx 0.23 \) at \(K=0 \), respectively. On the other hand, the corresponding values in the magic angle nutation are 1 and \(\sqrt{2} \), respectively.

A similar numerical calculation shows that the line narrowing of this type can also be expected slightly at TQ off resonance.

The narrowing effect of this type may be useful for high-resolution NMR in solids and may occur for other multiple-quantum resonance. The details will be published later.
References

TABLE 1

Total Hamiltonians and the Transformation Process

\[H_0(t) = -\omega_1 e^{2i\phi_1 I_x \sin \omega_1 t} I_x e^{-2i\phi_1 I_x \sin \omega_1 t} + H_d^{(0)} \]

(The x axis is along the RF field.),

\[U_1 = e^{-2i\phi_1 I_x \sin \omega_1 t}, \]

\[H_1(t) = -\omega_1 I_x + 2\phi_m \omega_2 I_x \cos \omega_2 t + H_d^{(1)}, \]

\[U_2 = e^{i\omega_1 I_y}, \]

\[H_2(t) = -\omega_1 I_x - 2\phi_m \omega_2 I_x \cos \omega_2 t + H_d^{(2)}, \]

\[U_3 = e^{i\omega_0 I_z}, \]

\[H_3(t) = -(\omega_1 + \omega_2) I_x - \phi_m \omega_2 I_x - \phi_m \omega_2 I_y \cos 2\omega_2 t + \phi_m \omega_2 I_y \sin 2\omega_2 t + H_d^{(3)}(t), \]

\[U_4 = e^{i\beta I_y}, \]

\[H_4(t) = -\omega_1 I_x - \phi_m \omega_2 I_x \cos \theta \cos 2\omega_2 t - \phi_m \omega_2 I_x \sin \theta \cos 2\omega_2 t + \phi_m \omega_2 I_y \sin 2\omega_2 t + H_d^{(4)}(t), \]

\[U_5 = e^{2i\omega_2 I_y}, \]

\[H_5(t) = -(\omega_c - 2\omega_2) I_x - \frac{1}{2} \phi_m \omega_2 (1 + \cos \theta) I_x - \phi_m \omega_2 I_x \sin \theta \cos 2\omega_2 t \]
\[- \frac{1}{2} \phi_m \omega_2 (\cos \theta - 1) e^{-4i\omega_2 I_y} I_x e^{4i\omega_2 I_y} + H_d^{(5)}(t) \]

(the fourth term neglected),

\[U_6 = e^{i\alpha I_y}, \]

\[H_6(t) = -\omega_1 I_x + \phi_m \omega_2 I_x \sin \theta \sin \alpha \cos 2\omega_2 t \]
\[- \phi_m \omega_2 I_x \sin \theta \cos \alpha \cos 2\omega_2 t + H_d^{(6)}(t) \]

(the third term neglected),

\[U_7 = e^{2i\omega_2 I_y}, \]

\[H_7(t) = \frac{1}{2} \phi_m \omega_2 \sin \theta \sin \alpha I_x + H_d^{(7)}(t). \]

Note. Hamiltonians \(H_j(t) \) \((j = 0 \sim 7)\) are expressed in units of \(\hbar \). Explicit forms of the dipole Hamiltonians \(H_d^{(j)}(t) \) are given in Table 2.
TABLE 2
Dipole Hamiltonians

\[\hbar H^{(p)}_d = \sum_{j,k} D_{jk} H^{(jk)}_p \quad (p = 1 \sim 7), \]

\[H^{(jk)}_1 = 3 I_{jz} I_{kz} - I_j I_k = \sqrt{6} T^{(jk)}_{20} \]

\[H^{(jk)}_2 = \sqrt{6} \sum_{l=2}^2 T^{(jk)}_{2l} d^2_{io}(-\frac{\pi}{2}), \]

\[H^{(jk)}_3(t) = \sqrt{6} \sum_{l=2}^2 T^{(jk)}_{2l} d^2_{io}(-\frac{\pi}{2}) e^{i\omega_0 t}, \]

\[H^{(jk)}_4(t) = \sqrt{6} \sum_{l=2}^2 \sum_{m=2}^2 T^{(jk)}_{2m} d^2_{io}(-\theta) d^2_{io}(-\frac{\pi}{2}) e^{i(-2m)\omega_0 t}, \]

\[H^{(jk)}_5(t) = \sqrt{6} \sum_{l=2}^2 \sum_{m=2}^2 T^{(jk)}_{2m} d^2_{io}(-\theta) d^2_{io}(-\frac{\pi}{2}) e^{i(-2m)\omega_0 t}, \]

\[H^{(jk)}_6(t) = \sqrt{6} \sum_{l=2}^2 \sum_{m=2}^2 \sum_{n=2}^2 T^{(jk)}_{2n} d^2_{nm}(-\alpha) d^2_{nm}(-\theta) d^2_{io}(-\frac{\pi}{2}) e^{i(-2m)\omega_0 t}, \]

\[H^{(jk)}_7(t) = \sqrt{6} \sum_{l=2}^2 \sum_{m=2}^2 \sum_{n=2}^2 T^{(jk)}_{2n} d^2_{nm}(-\alpha) d^2_{nm}(-\theta) d^2_{io}(-\frac{\pi}{2}) e^{i(-2m-2n)\omega_0 t}, \]

\[\hbar H_d = \sum_{j,k} D_{jk} \sqrt{6} \sum_{l=2}^2 \sum_{m=2}^2 \sum_{n=2}^2 T^{(jk)}_{2n} d^2_{nm}(-\alpha) d^2_{nm}(-\theta) d^2_{io}(-\frac{\pi}{2}). \]

\[(l - 2m - 2n = 0) \]

Note. Definitions of \(T^{(jk)}_{2m} \) and \(d^2_{nm}(\alpha) \) are given in Ref. (11).
Figure Captions

FIG.1. TQ nutation signal almost at $K = 0$ (dots). The experimental condition is that $\omega_2/2\pi = \omega_20/2\pi = 26.45$ kHz, $2 \phi_m = 0.764\pi$ rad, $\omega_1/2\pi = 65$ kHz, and $\omega_0/2\pi = 27$ MHz. The solid line shows the SQ nutation signal observed at $\omega_2/2\pi = 66$ kHz and with $2 \phi_m = 0.0940\pi$ rad, where the difference $(\omega_2 - \omega_1)/2\pi = 1$ kHz corresponds to a Bloch-Siegert shift. The dashed line is the decay curve of the magnetization spin-locked by the RF field without the PM, showing a spin-lattice relaxation in the rotating frame. All curves are obtained by plotting the intensity of the free induction decay signal just after the spin-locking RF pulse as a function of the duration t of the PM (dotted and solid lines) or of the RF pulse (dashed line).

FIG.2. Dependence of the experimental decay rate of the TQ nutation T^{-1} (dots) and that of the theoretical value $|K|$ (solid line) on ω_{20}. The decay rate T^{-1} is measured by assuming an exponential decay.