<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>キーワード</td>
<td>KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。</td>
</tr>
<tr>
<td></td>
<td>KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。</td>
</tr>
<tr>
<td></td>
<td>著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。</td>
</tr>
</tbody>
</table>
P-Glycoprotein (Abcb1) is involved in absorptive drug transport in skin

Katsuaki Itoa), Hai Thien Nguyena), Yukio Katoa), Tomohiko Wakayamab), Yoshiyuki Kuboa), Shoichi Isekib) and Akira Tsujia)*

a)Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 and b)Department of Histology and Embryology, Graduate School of Medical Science, Kanazawa University, Takara-machi, Kanazawa 920-8641, Japan.

*Corresponding author. Tel.: +81 76-234-4479; fax: +81 76-264-6284.

E-mail address: tsuji@kenroku.kanazawa-u.ac.jp (A. Tsuji)
Abstract

The purpose of the present study was to investigate the role of P-glycoprotein (P-gp) in drug disposition in skin. The distribution of P-gp substrates (rhodamine 123 and itraconazole) to the skin after administration from the epidermal side was lower in P-gp gene knockout (mdr1a/1b^{−/−}) mice than that in wild-type mice. Coadministration of propranolol, a P-gp inhibitor, decreased the distribution of itraconazole to the skin in wild-type mice, but not in mdr1a/1b^{−/−} mice. These results suggest that P-gp contributes to the influx (from the epidermal side) of its substrates into skin, although P-gp is generally involved in efflux of drugs from various tissues. This finding was supported by the lower vectorial transport of rhodamine 123 from the epidermal to the hypodermal side in mdr1a/1b^{−/−} mice in Ussing-type chamber experiments and by the immunohistochemical localization of P-gp throughout the dermal layer. Distribution of itraconazole after intravenous administration, on the other hand, was higher in mdr1a/1b^{−/−} mice than that in wild-type mice, suggesting that P-gp transports this drug from the skin to the circulation. The present findings are the first to demonstrate involvement of P-gp in dermal drug disposition.

KEY WORDS: Skin; Transporter; P-glycoprotein; ABCB1; Transdermal permeation
Introduction

Skin acts as a barrier against environmental stress and plays pivotal roles in homeostasis, including maintenance of body temperature and water balance. Stratum corneum (SC), the outermost layer of skin, is generally considered as a major barrier against environmental stress, and penetration of xenobiotics through the epidermal layer is quite limited due to the SC structure, which includes multiple lipid lamellae [1]. In addition to such physical barriers, there is increasing evidence that skin epithelial cells contain biochemical barrier systems [2-5]. These include metabolic enzymes expressed in skin keratinocytes that convert various types of xenobiotic compounds into hydrophilic metabolites, which can then be pumped out of the body [2-5].

Xenobiotic transporters have broad substrate specificity, and are involved in both uptake (influx) and secretion (efflux), thereby affecting cellular disposition of their substrates [6]. Therefore, it would be reasonable that both metabolic enzymes and transporters are expressed in skin to act cooperatively as barrier systems against environmental stress and toxins. Indeed, several transporter genes are expressed in both mouse and human skin [2, 7, 8].

Interplay between a metabolic enzyme, cytochrome P450 3A, and an ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp/ABCB1), has been suggested to occur in the metabolism and secretion of xenobiotics in a certain organ [9]. ABC transporters are one of the major xenobiotic transporter superfamilies and use ATP hydrolytic energy as a driving force for efflux pumping of various types of compounds [10]. Although such an interplay has not been demonstrated in skin, the functional expression of one of the ABC transporters, multidrug
resistance-associated protein 1 (MRP1/ABCC1), in mouse skin was recently demonstrated by using
mrp1 gene knockout mice, which exhibited an increase in the accumulation of two MRP1 substrates,
fluo 3 (1-[2-amino-5-(2,7-dichloro-6-hydroxy-3-oxo-9-xanthenyl)phenoxy]-2-(2-amino-5-
methylphenoxy)ethane-N, N, N, N-tetraacetic acid) and grepafloxacin, in the skin compared with
wild-type mice, suggesting that Mrp1 is involved in efflux of these compounds from the skin [11].
Organic anion transport system(s) have also been proposed to be involved in transdermal absorption
of flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID) which exhibits higher transdermal
permeability than other NSAIDs [12].

P-gp is another well-characterized ABC transporter which accepts various types of
compounds as substrates [13]. It is a product of multidrug resistance (MDR1) gene in humans,
whereas two subtype genes, mdr1a and mdr1b, are present in mice [13]. P-gp functions as an efflux
pump for various drugs in tissues such as brain, intestine and kidney [13]. In particular, the
distribution to the brain of various drugs is greatly limited by the function of P-gp expressed in
brain capillary endothelial cells [14, 15]. Despite the accumulated information on the fundamental
role of P-gp in drug disposition, the function and expression of P-gp in the skin have not yet been
fully characterized. We have already detected gene expression of MDR1 in human skin, and mdr1a
and mdr1b in mouse skin [8]. P-gp was also detected immunohistochemically in human skin and
neonatal mouse skin [2, 16]. The cooperative increase in the expression of P-gp and P450 3A in
skin in response to dexamethasone treatment may imply an interplay between P-gp and metabolic
enzymes in skin [2]. However, there is no report about the role of P-gp in drug disposition in the
skin. Considering the clinical importance of transdermal therapeutic systems, it seems important to investigate the transport mechanism underlying transdermal drug permeation.

The purpose of the present study was to clarify the role of P-gp in drug disposition in skin, focusing on transdermal drug permeation from the epidermal side and on drug distribution from circulating blood to the skin by using P-gp gene knockout (mdr1a/1b−/−) mice. To investigate the role of P-gp, the transdermal permeation of P-gp substrates was first examined by means of an Ussing-type chamber method in both absorptive and secretory directions. To further investigate the contribution of P-gp in vivo, P-gp substrates were transdermally or intravenously administered, and the concentrations in skin and plasma were analyzed. To more clearly observe the function of P-gp in the skin, we performed the Ussing-type chamber experiment and in vivo transdermal administration with tape-stripped mouse skin from which the stratum corneum had been removed, because transporters would function in viable skin layer (viable epidermis and dermis), but not in stratum corneum that consists of dead cells. In addition, we reported that the Ussing-type chamber method with tape-stripped skin may be useful to investigate the role of carrier-mediated transport systems in transdermal drug permeation [12].
Materials and methods

2.1. Materials

Rhodamine 123 (2-[6-amino-3-imino-3H-xanthen-9-yl]benzoic acid methyl ester) and FITC-dextran (fluorescein isothiocyanate-dextran) were purchased from Sigma Chemical Co. Ltd. (St. Louis, MO), itraconazole from LKT Laboratories Inc. (St. Paul, MN), and clotrimazole from Wako Pure Chemical Industries Ltd. (Osaka, Japan). All other reagents were commercial products of reagent grade, and were used without further purification.

2.2. Animals

Six- to nine-week-old male FVB/mdr1a/1b−/− and FVB/ mdr1a/1b+/+ mice were purchased from Taconic (Germantown, NY, USA) and CLEA Japan Inc. (Tokyo, Japan), respectively. The mice were kept in a temperature- and light-controlled environment with standard food and tap water provided ad libitum. Animal experiments were performed in accordance with the Guidelines for the Care and Use of Laboratory Animals in Kanazawa University. Three days before experiments, mouse was anesthetized with 1.3 µL/g body weight of sodium pentobarbital (64.8 mg/mL) subcutaneously administered, and the fur over the abdominal skin was removed using an electric hair clipper and depilatory cream.
2.3. Transdermal permeation assessed with an Ussing-type chamber

The permeation experiments were performed by means of an Ussing-type chamber method with tape-stripped mouse skin [12]. Briefly, a mouse was sacrificed under ether anesthesia, and the abdominal skin was stripped using vinyl tape (Nichiban Co., Tokyo, Japan) until the surface glittered (8 times). The skin was excised and mounted vertically in an Ussing-type chamber that provided an exposed area of 0.766 cm2. Hanks’ balanced salt solution (HBSS, 136.7 mM NaCl, 5.36 mM KCl, 0.952 mM CaCl$_2$·2H$_2$O, 0.812 mM MgSO$_4$·7H$_2$O, 0.441 mM KH$_2$PO$_4$, 0.385 mM Na$_2$HPO$_4$, 25 mM D-glucose and 10 mM HEPES, pH 7.4) was applied to both sides of the chamber. The volume of the bathing solution on both sides was 1.2 mL, and the solutions were kept at 37°C and gassed with 95% O$_2$ / 5% CO$_2$ to maintain tissue viability during experiments.

To measure the transdermal permeation, rhodamine 123 or FITC-dextran was applied to the hypodermal or epidermal side, and 0.3 mL of solution was withdrawn from the opposite side and replaced with an equal volume of fresh solution at the designated times. The fluorescence of samples was measured using fluorescence plate reader (Tecan Spectrafluor Plus, Tecan Austria, Salzburg, Austria). To compare the permeability through the skin between the two different compounds that were applied at different doses into the donor side, the transdermal permeability was represented as the distribution volume that was calculated by dividing the amount of drug permeated by the concentration of drug applied to the donor side. Namely, the permeated amount per unit area (pmol/cm2) was divided by the concentration in the applied solution (µM) and shown as distribution volume per unit area (µL/cm2).
2.4. Transdermal permeation experiments in vivo

Rhodamine 123 and FITC-dextran were dissolved in saline (0.4 and 5 mg/mL, respectively) and itraconazole was dissolved in dimethyl sulfoxide (DMSO, 0.5 mg/mL). The solution was applied to a patch for transdermal administration (16 mm diameter, Torii Pharmaceutical Co. Ltd., Tokyo, Japan). A mouse was anesthetized with sodium pentobarbital, the abdominal skin was stripped, and the patch was applied to the stripped region. At 6 h after dosing of rhodamine 123 and FITC-dextran, mice were sacrificed under ether anesthesia, and the abdominal skin and the blood were collected. Skin and blood were also collected at 18 h after dosing of itraconazole. To compare the absolute values in skin distribution between two compounds at different doses, tissue distribution after transdermal administration was represented as distribution volume. Namely, the distributed amount of drug per skin weight (ng/mg skin) was divided by the drug concentration in the applied solution (mg/mL) or that in circulating plasma (µg/mL), and shown as distribution volume per skin weight (nL or µL/mg skin).

2.5. Distribution of itraconazole to the skin after intravenous administration

Intravenous administration of itraconazole was performed according to the method of Hostetler et al. and Miyama et al. with minor modifications [17, 18]. A 10 mg/mL solution of itraconazole was prepared by dissolving the drug in 3-hydroxypropyl cyclodextrin solution. Briefly, 50 µL of propylene glycol and 7.5 µL of 5 M HCl were mixed and heated to 40 ~ 50 °C, then 20
mg of itraconazole was dissolved in the mixture, and the solution was cooled to 20 ~ 30 °C. 3-Hydroxypropyl cyclodextrin was dissolved at the concentration of 400 mg/mL in purified water, and the solution was then added to the itraconazole solution to give a final volume of 2 mL. The solution was adjusted to pH 5.0 with 10 M NaOH.

A mouse was anesthetized with sodium pentobarbital as described above, and itraconazole was injected into the jugular vein at a dose of 5 mg/kg body weight. Blood samples were collected at 5, 20, 40 and 60 min. At 60 min, the skin, the lungs and the brain were excised.

2.6. Measurement of rhodamine, itraconazole and FD-4

Rhodamine 123 concentration in skin and plasma was measured by means of high-performance liquid chromatography (HPLC) according to the method of Ando et al. with some modifications [19]. Briefly, a skin sample was homogenized in 1 mL of purified water. The homogenised sample or plasma sample (100 µL) was mixed with 300 µL of methanol and vortexed for 10 min. After centrifugation, 200 µl of the supernatant was centrifuged again. The supernatant was injected into the HPLC system, which consisted of a constant-flow pump (JASCO PU-2080 Plus), a fluorescence detector (JASCO FP-2020 Plus), an automatic sample injector (JASCO AS-2057 Plus) (JASCO International Co., Ltd., Tokyo, Japan), and an integrator (Chromatopac C-R7A, Shimadzu Corporation, Kyoto, Japan). The fluorescence detector was set at an excitation wavelength of 485 nm and emission wavelength of 565 nm. A reversed-phase column, TSKgel ODS-80TS (4.6 mm x 150 mm; Tosoh, Tokyo, Japan), was maintained at 40 °C in a column oven.
(JASCO CO-2065 Plus; JASCO International Co., Ltd.). The mobile phase consisted of 1% acetic acid (pH 4.0) and acetonitrile (7:3, v/v). The flow rate was 1.0 mL/min.

Itraconazole concentration in plasma and tissues was measured by HPLC as reported [20-22], with some modifications. A plasma sample was spiked with the internal standard, clotrimazole, and buffered at pH 7.8 with 0.05 M KH$_2$PO$_4$. After vortex-mixing, extraction was performed twice with 4 mL of heptane-isoamyl alcohol (98.5 : 1.5, v/v). The organic phase was back-extracted with 3 mL of 0.05 M H$_2$SO$_4$ and removed. The remaining acidic phase was alkanilized to pH 9 with 25% ammonia solution, and extraction was performed twice with 4 mL of heptane-isoamyl alcohol mixture again. The organic phase was evaporated to dryness under a stream of nitrogen at 55 °C. The residue was dissolved in the mobile phase and injected into the HPLC. A skin sample was homogenized in 0.5 mL of purified water and spiked with the internal standard. Then 0.5 mL of 5 N NaOH was added to the homogenized sample, and the sample was solubilized for 15 min at 75 °C. Next, 1 mL of 5 M ammonium acetate was added to the lysate, and the sample was extracted in the same way as described for plasma. Lung and brain samples were homogenized in 0.36 and 0.6 mL of purified water, respectively, and each homogenized sample was extracted as described in the case of plasma. The UV detector (JASCO UV-2075 Plus) was set at 263 nm. A reversed-phase column, COSMOSIL 5C18-MS-II (4.6 x 150 mm; Nacalai Tesque, Inc.), was used with a mobile phase of 0.05 % diethylamine in water and acetonitrile (40 : 60, v/v). The flow rate was 1.0 mL/min. Tissue-to-plasma concentration ratio of itraconazole was calculated by dividing the tissue concentration by the plasma concentration.
To measure FD-4 concentration, a skin sample was homogenized in 0.5 mL of purified water. Then 0.5 mL of 5 N NaOH was added to the homogenized sample, and the sample was solubilized for 15 min at 75°C. Next, 1 mL of 5 M ammonium acetate and 2 mL of heptane-isoamyl alcohol (98.5 : 1.5, v/v) were added to the lysate. The mixture was shaken for 30 min, and centrifuged at 1000 g for 10 min. The organic phase was removed, and 2 mL of heptane-isoamyl alcohol mixture was added to the water layer. After shaking and centrifugation, the organic phase was removed, and the fluorescence of the water phase was measured using a fluorescence plate reader.

2.7. Immunocytochemical analysis

Immunostaining of P-gp in mouse skin was performed according to the method of Sleeman et al. and Kato et al. with some modifications [16, 23]. The abdominal skin was embedded in optimal cutting temperature (OCT) compound, then quickly frozen in liquid nitrogen and stored at -80 °C until use. The frozen tissue was sectioned with a cryostat, and tissue sections were mounted on glass slides. Before staining, skin sections were fixed in ice-cold acetone for 30 sec and incubated in the mixture of 1% BSA and 5% skim milk for 30 min. Samples were then incubated with the monoclonal antibody against P-gp (C219) for 1 hr at room temperature, and subsequently with Alexa Fluor 488 goat anti-mouse IgG for 30 min. Finally, they were mounted in VECTASHIELD mounting medium with DAPI (Vector Laboratories, Burlingame, CA) to fix the sample and stain the nuclei.
2.8. Statistical analysis

All experiments were performed at least three times. Data are expressed as mean ± S.E.M.

Student's t-test was used to determine the statistical significance of differences between two groups. One-way analysis of variance (ANOVA) followed by Dunnett’s test was used to determine the statistical significance in comparisons of more than two groups. A p value of less than 0.05 was considered as statistically significant.
Results

3.1. Transdermal permeation of rhodamine 123 assessed in an Ussing-type chamber

Fig. 1 shows the transdermal permeation of a P-gp substrate, rhodamine 123, and a marker compound which permeates through the aqueous domain, FD-4, examined by means of Ussing-type chamber method. The absorptive permeation (from the epidermal to hypodermal side) of rhodamine 123 in mdr1a/1b−/− mice was significantly lower than that in wild-type mice (Fig. 1A). On the other hand, the secretory permeation (from the hypodermal to epidermal side) of rhodamine 123 in mdr1a/1b−/− mice was significantly higher than that in wild-type mice (Fig. 1B). Rhodamine 123 permeation in wild-type mice thus occurred preferentially in the absorptive direction, whereas that in mdr1a/1b−/− mice did not (Fig. 1A, 1B). The transdermal permeation of FD-4 was similar in wild-type and mdr1a/1b−/− mice in both directions (Fig. 1C, 1D). The rhodamine 123 permeation in both strains were higher than that of FD-4, indicating that the transcellular pathway might be the major route for the transdermal permeation of rhodamine 123.

3.2. Transdermal permeation of rhodamine 123 and itraconazole in vivo

To further examine the permeation of P-gp substrates in the absorptive direction in vivo, a patch for transdermal administration was employed. Fig. 2 shows the distribution of rhodamine 123 and FD-4 to the skin after transdermal administration. The distribution of rhodamine 123 in mdr1a/1b−/− mice was significantly lower than that in wild-type mice (Fig. 2A). On the other hand, the distribution of FD-4 was similar in wild-type and mdr1a/1b−/− mice (Fig. 2B), and lower than
that of rhodamine 123, indicating that the difference in skin distribution of rhodamine 123 between
the two strains cannot be explained simply by a difference in the distribution to extracellular space.

Plasma concentration of rhodamine 123 was below the detection limit at all the sampling points (<
10 ng/mL of plasma) probably because of small amount applied (~ 20 µg) to the patch due to the
dissolution limit of rhodamine 123 in saline.

To further support the involvement of P-gp, the distribution of itraconazole was examined
in vivo. Itraconazole is applied for the treatment of fungal infections of the skin and is known to be
a P-gp substrate [18, 24, 25]. Fig. 3 shows that the distribution of itraconazole to the skin after
transdermal administration was significantly lower in mdr1a/1b−/− mice than that in wild-type mice.
The effect of P-gp inhibitors on the distribution of itraconazole to the skin was then examined. In
a preliminary study, the effect of the P-gp substrates or inhibitors verapamil, propranolol and
celiprolol [25-27] was examined in wild-type mice. Coadministration of each of them decreased the
distribution of itraconazole to the skin, but propranolol had the greatest effect (data not shown). In
addition, propranolol is the potential candidate for the transdermal drug delivery [28], since oral
bioavailability of propranolol is quite low due to significant first-pass hepatic metabolism [29], but
propranolol may be permeabilized through the skin at least to some extent [28]. Therefore, the
effect of propranolol was further examined in both wild-type and mdr1a/1b−/− mice. The distribution
of itraconazole was decreased by the coadministration of propranolol in wild-type mice, but not in
mdr1a/1b−/− mice (Fig. 3). In our preliminary study, more typical P-gp inhibitor like varapamil than
propranolol had weaker effects on the distribution of itraconazole to the skin. Although the reason
for this finding is unknown, permeability of inhibitors themselves through the skin may also have to be considered to discuss potential inhibition of P-gp functionally expressed in the skin, because not only the affinity of inhibitors for P-gp, but also the concentration of inhibitors available in the skin would affect the inhibition potential for P-gp expressed in the skin. Plasma concentration of itraconazole was below the limit of detection (< 0.5 µg/mL of plasma).

3.3. Distribution of itraconazole from circulating blood to the skin

To examine the skin distribution from the blood side, itraconazole was intravenously administered, and both plasma concentration and skin distribution were determined (Fig. 4). The plasma concentration of itraconazole was similar in wild-type and mdr1a/1b−/− mice (Fig. 4A), whereas the tissue-to-plasma concentration ratio at 60 min after administration in the skin of mdr1a/1b−/− mice was significantly higher than that in wild-type mice (mdr1a/1b−/−/wild-type ratio = 1.4). The tissue-to-plasma concentration ratio in the brain of mdr1a/1b−/− was also significantly higher than that in wild-type mice, whereas that in the lung of mdr1a/1b−/− tended to be higher, but not significantly so, than that in wild-type mice. Such differences in the contribution of P-gp between brain and lung were in good agreement with reported data [18].

3.4. Localization of P-gp in mouse skin

Although we have already demonstrated gene expression of mdr1a and mdr1b in mouse skin [8], information on the localization of their gene products is limited. Fig. 5 shows the result of immunohistochemical analysis of P-gp in mouse skin. P-gp was observed throughout the dermal
and hypodermal (subcutaneous) layers of wild-type mice, while fluorescence staining was absent in those layers of mdr1a/1b−/− mice (Fig. 5). Fluorescence observed in the cornified layer could be nonspecific since it was observed not only in wild-type mice, but also in mdr1a/1b−/− mice (Fig. 5). It was previously reported that immunoreactive staining against P-gp antibody was detected in the epidermis and the eccrine part of the sweat glands [2, 16, 30]. In the present study, on the other hand, the expression of P-gp was mainly detected in the dermis, but unclear in the epidermis or the eccrine part of the sweat glands. It is generally considered that substances tend to enter the bloodstream via the capillary bed near to the epidermal-dermal junction after transdermal administration. Therefore, if P-gp is only expressed in dermis and/or hypodermis, P-gp may not play fundamental role in drug disposition after transdermal administration. However, the present finding alone cannot rule out the possibility of the expression of relatively lower amount of P-gp in epidermis, since the detection of P-gp in epidermis may be hindered due to the much higher P-gp expression in dermis and hypodermis regions. Further studies are necessary to clarify physiological role of P-gp expressed in each region of the skin.
Discussion

P-gp has been shown to be involved in drug distribution and excretion in various organs, including intestine, liver and kidney [13]. Nevertheless, the contribution of P-gp to transdermal drug permeation has remained unknown. In the present study, we demonstrate that P-gp contributes to the in vivo transport of substrates in the absorptive direction in skin (Figs. 2, 3). Specifically, after transdermal administration, the distribution of rhodamine 123 and itraconazole to the skin in mdr1a/1b^-/- mice was lower than that in wild-type mice (Figs. 2A, 3), whereas that of FD-4 was similar in the two strains (Fig. 2B). Further, the coadministration of propranolol (a P-gp inhibitor) decreased the itraconazole distribution in skin in wild-type mice, but not in mdr1a/1b^-/- mice (Fig. 3). These results suggest that P-gp contributes to itraconazole absorption into the skin after transdermal administration. This finding was unexpected, since P-gp is generally considered to play a role as a barrier system to pump out xenobiotic compounds from the body. However, the occurrence of P-gp-mediated absorption was also supported by Ussing-type chamber studies: the transdermal permeation of rhodamine 123 in wild-type mice was shown to be vectorial, favoring the absorptive direction, whereas that in mdr1a/1b^-/- mice was not (Fig. 1A, 1B). No vectorial permeation of an extracellular marker, FD-4, was observed in either of the strains (Fig. 1, C, D). In the transdermal administration of itraconazole, DMSO was used as a vehicle according to the previous reports [31, 32]. On the other hand, DMSO was reported to extract lipids and interact with keratin in the skin [33]. Therefore, the skin damage cannot be excluded during the transdermal administration of itraconazole for 18 h in the present study. However, there was no obvious morphological difference
in the skin at the end of transdermal administration between itraconazole and rhodamine 123 (administered for 6 h using saline as a vehicle). In addition, the difference in distribution of itraconazole to the skin was observed between wild-type and mdr1a/1b^{-/-} mice (Fig. 3). Therefore, the present finding may suggest possible involvement of P-gp in distribution of itraconazole to the skin, although further studies using other P-gp substrates and solvents are necessary to confirm this hypothesis.

On the other hand, when itraconazole was intravenously administered, the tissue-to-plasma concentration ratio in the skin was significantly higher in mdr1a/1b^{-/-} mice than that in wild-type mice, as in the case of brain (Fig. 4, B). In brain, P-gp is expressed on luminal membranes of capillary endothelial cells and exports its substrates into the blood [14, 15]. Similarly, the present findings can be explained if we consider that P-gp is involved in the efflux of its substrates from skin to blood. Verapamil, a P-gp substrate, inhibited the efflux of rhodamine 123 in fibroblasts isolated from human dermis [34], also supporting the existence of P-gp-mediated efflux. Although the physiological role of P-gp-mediated efflux from skin to the blood is unknown, it should be noted that skin has a large organ volume (more than twice that of the liver), of which 30% represents interstitial fluid that contains albumin at a similar level to that in plasma [35, 36]. Skin may therefore act as a storage depot for hydrophobic xenobiotics. In addition, various types of metabolic enzymes that also recognize xenobiotic compounds are expressed in skin [2-5]. Therefore, the skin may play a role in capturing the xenobiotic compounds present in the circulating blood, and converting them into hydrophilic metabolites. In the skin, not only P-gp, but also other ABC
transporters, MRP1 and BCRP, are functionally expressed [2, 8, 11, 37]. Therefore, these efflux transporters may contribute to the export of such metabolites into circulating blood. In addition, the passive influx and subsequent P-gp-mediated efflux might enhance the efficiency of metabolism, because the blood flow rate per organ volume in the skin is much smaller than in other organs [35, 36], so the interplay of enzyme-transporter interactions may be similar to that in the small intestine [9].

Fluconazole is another triazole antifungal agent that is employed to treat skin infection [33, 38]. A study in guinea pigs indicated that the distribution of itraconazole to the epidermis and hypodermis after systemic administration was much lower than that of fluconazole, even though the plasma concentrations of these drugs are similar [38]. This observation was previously explained in terms of differences in binding to keratin between itraconazole and fluconazole [38]. However, the affinity of itraconazole for P-gp (IC$_{50}$ < 3 µM) is much higher than that of fluconazole (IC$_{50}$ > 400µM) [25, 39]. Therefore, our present finding regarding the contribution of P-gp to the transport of itraconazole from skin to blood may indicate that P-gp expressed in the skin effectively transports itraconazole from skin to blood, resulting in a lower distribution to the skin, compared with that of fluconazole.

Involvement of P-gp in drug absorption in the skin could have significant implications for drug development, given that P-gp has a broad substrate specificity [13]. Oral administration of P-gp substrates can be problematic, since intestinal P-gp limits their absorption from the intestinal tract [6]. In skin, on the other hand, P-gp may serve to increase distribution from the epidermal side
to the skin (Figs. 2, 3). This finding may have impact on the selection of a suitable administration route for P-gp substrates. In addition, several single-nucleotide polymorphisms in MDR1 gene are known to alter the expression and/or function of P-gp [13]. This may cause interindividual differences in the kinetics of drug disposition in the skin. For example, sparfloxacin and levofloxacin, both of which are fluoroquinolones and P-gp substrates, cause adverse dermatological reactions, such as photosensitivity dermatitis [40, 41]. Further analysis should be performed to clarify the possible relevance of P-gp to such adverse reactions. In the present study, however, plasma concentrations of rhodamine123 and itraconazole after transdermal administration were below the limit of detection, probably because of limited permeation of these compounds through the skin. In addition, the present analysis has not yet analyzed details in substrate specificity of P-gp functionally expressed in the skin. Only limited numbers of substrate and inhibitor of P-gp were used in the present study because of the limited permeability of commercially available P-gp substrates through the skin. Therefore, the present finding is the first step to clarify the involvement of P-gp in dermal drug disposition. Investigations using more permeable drugs will also be necessary to demonstrate important implications of P-gp for the delivery of therapeutic agents into and through the skin.

It should be noted that the phenotype regarding skin distribution in mdr1a/1b−/− mice was different between transdermal and intravenous administrations. The distribution to the skin was decreased by mdr1a/1b−/− knockout after transdermal administration (Fig. 2, 3), whereas it was increased after intravenous injection (Fig. 4). Possible explanations include uneven localization of
P-gp, leading to a difference in the contributions of P-gp to permeability from the epidermal side into the skin and from skin to blood. In the present study, immunohistochemical analysis revealed that P-gp is expressed in dermis, although the polarity of P-gp expression in the dermal cells was not clearly observed (Fig. 5). The skin consists of multilayers of various differentiated and undifferentiated cells, and therefore the distribution of localization and/or function of transporters also needs to be clarified.

In the present study, stratum corneum had been removed by tape-stripping despite the poor permeability barrier of mouse skin compared to human skin. In clinical applications, skin is rarely tape-stripped prior to application of a transdermal patch. Furthermore, it is believed that stratum corneum is the rate-determining step for the transdermal permeation of most drug molecules. Therefore, further study with intact skin is needed to investigate the clinical relevance of the P-gp function in the skin. In addition, to avoid possible saturation of P-gp, we attempted to use the lowest concentration of rhodamine 123 in Usssing-type chamber by considering the detection limit. Therefore, the substrate concentration in the present study may be much lower than that typically applied in transdermal systems. Since the contribution of P-gp in dermal drug disposition may depend on the substrate concentration, investigations using P-gp substrates at clinically relevant concentration range are also needed to clarify clinical implication of P-gp in transdermal drug delivery.

In conclusion, our present findings indicate that P-gp contributes to the transport of its substrates both from the epidermal side into the skin, and from skin to blood. Because many drugs
are reported to be substrates for P-gp [13], it is also implied that P-gp contributes to the dermal disposition of other P-gp substrates than rhodamine 123 and itraconazole. Therefore, further studies in intact skin with stratum corneum are needed to clarify clinical implications of P-gp for the delivery of therapeutic agents into and through the skin.
Acknowledgement

We thank Ms Lica Ishida for technical assistance with LC-MS/MS. We also thank Ms Emi Nambu for performing animal experiments. This study was supported in part by a Grant-in-Aid for Scientific Research provided by the Ministry of Education, Science and Culture of Japan.
References

P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 77(4) (1994) 491-502.

Figure legends

Fig. 1

Transdermal permeation of rhodamine 123 and FD-4 across tape-stripped skin of wild-type and mdr1a/1b^{−/−} mice

Transdermal permeation of rhodamine 123 (0.5 µM) (A, B) and FD-4 (10 µM) (C, D) from the epidermal to the hypodermal side (absorptive direction) (A, C) and from the hypodermal to the epidermal side (secretory direction) (B, D) was measured at 37°C in Hanks’ balanced salt solution. Open and closed symbols represent the transdermal permeation in wild-type and mdr1a/1b^{−/−} mice, respectively. The data represent means ± S.E.M. (n = 3 - 9). When error bars are not shown, they were smaller than the symbols.

* Significantly different from wild-type mice (p < 0.05).

Fig. 2

Distribution of rhodamine 123 and FD-4 to stripped skin of wild-type and mdr1a/1b^{−/−} mice after transdermal administration

Rhodamine 123 (A) and FD-4 (B) distributed to the skin were measured 6 h after the start of transdermal administration. Rhodamine 123 solution (0.4 mg/mL in saline, 100 µL) or FD-4 solution (5 mg/mL in saline, 100 µL) was first applied to a patch for transdermal administration, and then the patch was applied to tape-stripped abdominal skin. Open and grey columns represent
the distribution normalized by the drug concentration in administered solution in wild-type and mdr1a/1b⁻/⁻ mice, respectively. The results are shown as mean ± S.E.M. (n = 3 - 5).

* Significantly different between wild-type and mdr1a/1b⁻/⁻ mice given the same treatment (p < 0.05).

Fig. 3

Distribution of itraconazole in stripped skin of wild-type and mdr1a/1b⁻/⁻ mice after transdermal administration

Itraconazole distributed to the skin was measured 18 h after application. Itraconazole solution (0.5 mg/mL DMSO, 50 µL) with or without propranolol (100 mM) was first applied to a patch for transdermal administration, and the patch was applied to tape-stripped abdominal skin. Open and grey columns represent the accumulation in wild-type and mdr1a/1b⁻/⁻ mice, respectively. The amount of distribution was normalized by the drug concentration in administered solution, and results are shown as mean ± S.E.M. (n = 3 - 4).

* Significantly different from wild-type mice without propranolol (p < 0.05).

Fig. 4

Distribution of itraconazole in wild-type and mdr1a/1b⁻/⁻ mice after intravenous administration
Itraconazole was intravenously administered at a dose of 5 mg/kg body weight. In panel A, open and grey circles represent the plasma concentration in wild-type and mdr1a/1b^{−/−} mice, respectively. Panel B shows tissue-to-plasma concentration ratio at 60 min after administration in wild-type (open columns) and mdr1a/1b^{−/−} mice (grey columns). Data are expressed as mean ± S.E.M (n = 3-4). When error bars are not shown, they were smaller than the symbols.

Fig. 5

Immunohistochemical analysis of P-gp expression in skin from wild-type and mdr1a/1b^{−/−} mice

Cryosections (10 µm) of skin from wild (A) and mdr1a/1b^{−/−} mice (B) were incubated with anti-P-gp antibody (C219) followed by goat anti-mouse Alexa 488 (green signal). Both sections were counter-stained for nuclei with DAPI (blue signal).
Fig. 1

Permeability (µL / cm²) vs. Time (h)

(A) (C)

(B) (D)
Fig. 2

(A) Rhodamine 123 Distribution (nL/mg skin) for wild and mdr1a/1b−/−.

(B) FD-4 Distribution (nL/mg skin) for wild and mdr1a/1b−/−.
Fig. 1
Fig. 2

(A) Rhodamine 123 Distribution (nL / mg skin)

(B) FD-4 Distribution (nL / mg skin)
Fig. 3

Itraconazole Distribution (nL / mg skin)

Propranolol - + - +

wild mdr1a/1b^{−/−}
Fig. 4

(A) Plasma Concentration (µg/mL) over Time (min)

(B) Tissue to Plasma Concentration Ratio (µL/mg skin) for Skin, Lung, and Brain
Fig. 5

(A)

(B)