<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
</table>
| キーワード | KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。
| | KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。
| | 著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続きについては、各著作権等管理事業者に確認してください。
| URL | http://dspace.lib.kanazawa-u.ac.jp/dspace/ |
Preliminary communication

Val1483Ile polymorphism in the fatty acid synthase gene was associated with depressive symptoms under the influence of psychological stress

Hirohito Tsuboi a,⁎, Hiroyuki Sakakibara b, Kimiko Yamakawa-Kobayashi c, Asami Tatsumi d, Tomoko Inamori e, Reiko Hamamoto f, Atsuko Suzuki f, Kayoko Shimoib

a Department of Drug Management and Policy, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
b Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Japan
c School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
d Department of Community Health Nursing, Hamamatsu University School of Medicine, Hamamatsu, Japan
e Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan

ABSTRACT

Background: To study the association between lipid-metabolism and depressive symptoms, genetic polymorphisms in serotonin transporter linked promoter region (5-HTTLPR) and fatty acid synthase gene (FASN) were investigated.

Method: A cross-sectional study was conducted on 177 women (n = 166) and men (n = 15) recruited from workers in a hospital and nursing homes in Japan. Depressive symptoms were assessed by the Center for Epidemiologic Studies Depression (CES-D) scale and perceived psychological stress was measured using visual analogue scale (VAS). The genotypes of 5-HTTLPR (insertion/deletion; L/S), and FASN (Val1483Ile) were determined by the PCR methods. Linear regression analysis was performed, in which CES-D scores served as a dependent variable, and VAS scores, gene polymorphism, and confounders as independent variables.

Results: Under the influence of perceived stress, S/S carriers of the 5-HTTLPR gene showed significantly higher CES-D scores in comparison with L/L + L/S carriers (F = 8.2, standardised beta = 0.15, p < 0.05). Regression analysis also confirmed that CES-D scores in participants with Val/Val + Val/Ile genotypes of the FASN gene were significantly higher than those with Ile/Ile genotype (F = 8.4, standardised beta = 0.16, p < 0.05). In relation to physical features, BMI among participants with S/S genotype of 5-HTTLPR was significantly lower compared with those with L/L + L/S.

Conclusions: The Val1483Ile polymorphism in the FASN was associated with depressive symptoms under the influence of psychological stress. The S variant of 5-HTTLPR was related with less obese.

© 2011 Published by Elsevier B.V.

1. Introduction

Literature suggested the association between depression and lipid metabolism: ex. lowered serum cholesterol levels were observed in depressive patients, particularly in those with suicidal behaviour (Fawcett et al., 1997), whereas the comorbidity between depression and hyperlipemia was also reported (Akbaraly et al., 2009). We are attempting to clarify this association from the point of view of different genotypes.

Genetic variation in the 5′ flanking transcriptional region of serotonin transporter gene (5-HTTLPR), which originates long (L) and short (S) alleles, plays a role in predisposition to major depression in interaction with stressful life events (Caspi et al., 2003). The serotonergic system was hypothesised to regulate behavioural and metabolic responses associated with the development of obesity through feeding and satiety (Barsh and Schwartz, 2002). Fatty acid (FA) metabolism may also...
explain one of the mechanisms to link the psychological and somatic disorders. FA synthase (FAS), which is encoded by the FAS gene (FASN), is the central enzyme in de novo lipogenesis, catalysing the conversion of malonyl CoA into palmitate (Semenovich, 1997). The Val1483Ile polymorphism in the FASN is linked to central obesity and insulin sensitivity, and putatively affects FAS action (Moreno-Navarrete et al., 2009). Although the evidence of the relationships between lipid-metabolism and affection remains controversial, it is relevant on the biological pathway. The aim of this study was to investigate the common effects of the 5-HTTLPR and the FASN genes.

2. Participants and methods

A cross-sectional study was carried out on 177 women (n = 166) and men (n = 15) with a mean age of 42.4 (SD 13.17), recruited from workers in a hospital and two nursing homes located in Shizuoka Prefecture, Japan. The Ethics Committee of University of Shizuoka approved the study protocol, and all participants gave informed consent to participate in this study. Self-administrated questionnaire was distributed to the participants beforehand and answered one day before the examination day (working days). The questionnaire contains the demographic measures (age, gender, medication, etc.), lifestyle characteristics (smoking status: non-smoker or former/current), current alcohol consumption: <once per week, ≥once per week; and leisure-time physical activity: <once per month, ≥once per week, and psychological measures. Perceived stress was given using visual analogue scales (10 cm) anchored with “not at all” and “quite strong”. Depressive symptoms were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D) (Matthews et al., 1985; Shima et al., 1985).

Fasting blood was sampled between 0830 and 1030 h from the forearm vein of each participant with a heparinized and serum-separator vacutainer tubes from which sera were obtained by centrifugation. The sera samples were delivered to a laboratory (FALCO Inc., Hamamatsu), and the heparinized blood tubes were shipped to University of Shizuoka. Serum triglycerides (TG) and total cholesterol (TC) were measured enzymatically. High-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were determined by precipitation method using heparin-calcium. To assess insulin resistance, the homeostasis model assessment of insulin resistance (HOMA-IR) was used: fasting serum insulin (μU/ml) × glucose (mg/dl)/405 (Matthews et al., 1985). The homeostasis model assessment of β-cell function (HOMA-B) was calculated as fasting serum insulin (μU/ml) × 360/(glucose (mg/dl) − 63) (Matthews et al., 1985). Leukocytes were isolated from the heparinized blood by density centrifugation by the method of English and Andersen (1974), as described by Albrechtsen et al. (1988). Genomic DNA was then extracted from the leukocytes using the phenol-chloroform extraction method (Sambrook et al., 2006). The genotype of 5-HTTLPR (insertion/deletion; I/S) was determined by amplified the fragments including the polymorphisms by PCR. The FASN genotype (Val1483Ile, rs2228305) was determined by restriction fragment length polymorphism analysis.

Data were analysed by the Japanese versions of SPSS (ver. 12.0.1) for Windows OS. For comparison of differences of each genotype, analysis of covariance was utilised. Multiple regression analysis was conducted to evaluate depressive symptoms under the influence of perceived psychological stress and covariates. A probability p value less than 0.05 was considered significant.

3. Results

Prior to data analysis, one person taking steroid contained medicine, one participant ingesting Graves disease remedy.
Differences of psychological factors and indices related with metabolic syndrome between overall genotypes.

Table 2

<table>
<thead>
<tr>
<th>Genotype</th>
<th>5-HTTLPR (S/S)</th>
<th>FASN (Val/Val)</th>
<th>FASN (Val/Val)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standardised β</td>
<td>Standardised β</td>
<td>F value and adjusted Δ^2 value of each regression model</td>
</tr>
<tr>
<td>Genotype</td>
<td>β</td>
<td>β</td>
<td>Model 1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ^2</td>
<td>Δ^2</td>
<td>Δ^2</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>0.15*</td>
<td>0.15*</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.16*</td>
<td>0.16*</td>
<td></td>
</tr>
<tr>
<td>Model 3 (Model 1 + Model 2)</td>
<td>0.15*</td>
<td>0.15*</td>
<td></td>
</tr>
</tbody>
</table>

Results are expressed as mean (SE). Comparisons are controlling for age, gender, BMI, smoking habit, alcohol consumption, and physical activities. BMI: body mass index. Subjective stress: perceived stress assessed using visual analogue scales anchored with “not at all” (0%) and “quite strong” (100%). 5-HTTLPR: Serotonin transporter gene linked polymorphism (L: long, S: short). FASN: Val(G)1483Ile(A) polymorphism in the fatty acid synthase gene. TC: Triglyceride. TG: total cholesterol. HDL-C: high-density lipoprotein cholesterol. LDL-C: low-density lipoprotein cholesterol. HOMA-IR: homeostasis model assessment of insulin resistance. HOMA-B: homeostasis model assessment of beta-cell function. Note that the subject number included in this analysis is slightly lower, owing to the lack of information for a few subjects.

4. Discussion

It was found that participants with Val/Ile + Ile/Ile genotypes in the FASN showed higher depressive symptoms in comparison with those with Val/Val under the influence of subjective psychological stress, and that participants with 5-HTTLPR S/S genotypes exhibited significantly lower BMI in comparison with those with Val/Val under the psychological stress. Further, the S/S genotype of 5-HTTLPR was significantly related with depressive symptoms in comparison with S/S + L/L genotypes under the influence of psychological stress (Model 1: Standardised β = 0.15, $p < 0.05$). Participants with the Val/Ile + Ile/Ile genotype in the FASN revealed a significantly higher depressive symptoms in comparison with those with Val/Val under the psychological stress (Model 2: Standardised β = 0.16, $p < 0.05$). Even though the 5-HTTLPR and FASN genotypes were put into the analysis model together, each of them showed significance (Model 3: Standardised β = 0.15, $p < 0.05$; Standardised β = 0.15, $p < 0.05$); i.e., the 5-HTTLPR and the FASN were independently related with depressive symptoms.

Table 3

Multivariate linear regression analyses showing the association of depressive symptoms with subjective stress and genotype ($n = 174$).

<table>
<thead>
<tr>
<th>Gene polymorphism</th>
<th>5-HTTLPR (S/S: L/S + L/L)</th>
<th>FASN (Val/Val: Ile/Ile + Val/Ile)</th>
<th>F value and adjusted Δ^2 value of each regression model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ^2</td>
<td>Δ^2</td>
<td>Δ^2</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>0.15*</td>
<td>0.15*</td>
<td>$F = 8.2$ (8, 169)</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.16*</td>
<td>0.16*</td>
<td>$F = 8.4$ (8, 167)</td>
</tr>
<tr>
<td>Model 3 (Model 1 + Model 2)</td>
<td>0.15*</td>
<td>0.15*</td>
<td>$F = 8.0$ (9, 165)</td>
</tr>
</tbody>
</table>

Each model was adjusted by gender, age, BMI, leisure time physical activities, smoking habit and alcohol consumption. All models of overall genotypes are significant ($p < 0.0005$).

* $p < 0.05$.
HTTLPR S/S genotype exhibited higher depressive symptoms compared with those with L/S+L/L genotypes. In addition, in S/S participants, BMI was lower and serum TG levels appeared to be lower in comparison with L/S+L/L participants.

5-HTTLPR S variant has been thought to be associated with susceptibility for depression (Canli and Lesch, 2007) since a longitudinal study revealed the vulnerability of S variant to stressful life events (Caspi et al., 2003). The present study supports the result. In addition, our results indicated that 5-HTTLPR S variant could work to reduce obesity risks, though it is unsolved whether the 5-HTTLPR directly affect obesity-related index, or there were confounders between them. Discrepant results concerning the 5-HTTLPR variants and obesity were obtained in previous studies. Sookoian et al. (2008) showed that S/S carriers had higher body weights in comparison with L/L carriers in obese (BMI ≥ 27 kg/m²) group of healthy male population. Lan et al. (2009) reported that S/S genotype was a determinant of increased BMI level in non-elderly stroke patients. On the other hand, Bah et al. (2010) presented that S allele tended to be more frequent in underweight persons among normal population. Discrepant results concerning 5-HTTLPR and BMI in previous studies might depend on participants’ characteristics, such as healthy, having metabolic syndrome risks, etc. Since participants analysed in the current study were healthy volunteers, studies on normal population can support our results. Thus, it seems meaningless to discuss the relationships L allele and binge eating (Monteleone et al., 2006), or to think of the associations between S allele and anorexia nervosa (Hoffman et al., 2007) in relation to our results.

FASN gene encodes FAS, which is an enzyme in de novo lipogenesis (Semenovich, 1997). Moreno-Navarrete et al. (2009) recently showed that the adipose tissue FAS activity was significantly higher in subjects with the Val variant in comparison with carriers of the Ile variant. In addition, Val allele in the FASN is linked with impaired glucose tolerance, visceral obesity etc. (Kovacs et al., 2004; Moreno-Navarrete et al., 2009). However, no differences were found between Val and Ile alleles in lipid and glucose-metabolism indices in this study. An interesting finding in the present study was that the FASN was related with depressive symptoms in the same degrees as the 5-HTTLPR under the influence of perceived stress, suggesting that Val1483Ile polymorphism in the FASN gene can affect the susceptibility to depression, and that the Ile variant may contribute to vulnerability to psychological stress. The pathway of the FASN effects on depressive symptoms is thought to differ from the one of 5-HTTLPR because each genotype was independently related with depressive symptoms as shown in model 3 of Table 3.

There are limitations in the current study. Serotonin levels in the central nervous system were unknown. The number of male participants was small, which unavoidably put the gender factor as an independent variable of linear statistical models. Sample size could not be enough large to compare FASN alleles. Our results may be considered as preliminary, and further research is needed to confirm these findings. However, we presented possible relationships between depressive symptoms and FASN gene, and between BMI and 5-HTTLPR.

6. United reference

Sambrook et al., 1989

Role of funding source

Funding for this study was provided primarily by a grant for the Cooperation of Innovative Technology and Advanced Research in Evolutionary Area, and additionally by a grant-in-aid for Scientific Research, Ministry of Education, Culture, Sports, Science and Technology, Japan. None of these funding sources had a role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the paper for publication.

Conflicts of interest

None of the authors have any conflicts of interest.

Acknowledgement

This research was primarily supported by a grant for the Cooperation of Innovative Technology and Advanced Research in Evolutionary Area (city area) to K.S., and additional support was provided by a grant-in-aid for Scientific Research (C) 21500665 to H.T., Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

insulin sensitivity in adult white men. Obesity 17, 1755–1761 (Silver Spring).

Please cite this article as: Tsuboi, H., et al., Val1483Ile polymorphism in the fatty acid synthase gene was associated with depressive symptoms under the influence of psychological stress, J. Affect. Disord. (2011), doi:10.1016/j.jad.2011.05.010