<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>テンポ</td>
<td>KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。</td>
</tr>
<tr>
<td>テンポ</td>
<td>KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。</td>
</tr>
<tr>
<td>テンポ</td>
<td>著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。</td>
</tr>
</tbody>
</table>

Title

Low-dose 123I-metaiodobenzylguanidine diagnostic scan is inferior to 131I-metaiodobenzylguanidine posttreatment scan in detection of malignant pheochromocytoma and paraganglioma

Author(s)

Kayano, Daiki; Taki, Junichi; Fukuoka, Makoto; Wakabayashi, Hiroshi; Inaki, Anri; Nakamura, Ayane; Kinuya, Seigo

Citation

Nuclear Medicine Communications, 32(10): 941-946

Issue Date

2011-10

Type

Journal Article

Text version

author

URL

http://hdl.handle.net/2297/29298

Right

http://dspace.lib.kanazawa-u.ac.jp/dspace/
Low dose 123I-MIBG diagnostic scan is inferior to 131I-MIBG post-treatment scan in detection of malignant pheochromocytoma and paraganglioma

The short title of the article: 123I-MIBG scan and 131I-MIBG post-treatment scan

Daiki Kayano, Junichi Taki, Makoto Fukuoka, Hiroshi Wakabayashi, Anri Inaki, Ayane Nakamura, Seigo Kinuya

Daiki Kayano, Junichi Taki, Makoto Fukuoka, Hiroshi Wakabayashi, Anri Inaki, Ayane Nakamura, Seigo Kinuya: Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan

The name and address of the author responsible for correspondence concerning the manuscript and the name and address of the author to whom requests for reprints: Daiki Kayano, Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
Telephone number: +81-76-265-2333
Facsimile number: +81-76-234-4257
e-mail: kayano@nmd.m.kanazawa-u.ac.jp

This research did not receive any support in the form of grants, equipment, drugs, or combination of these.
This research did not receive any funding from any of the following organizations: National Institutes of Health; Wellcome Trust; Howard Hughes Medical Institute; and others.
Abstract

Objective: We assessed the lesion detectability of low dose diagnostic 123I-metaiodobenzylguanidine (MIBG) whole body scans obtained at 6 and 24 hours compared with post-treatment 131I-MIBG whole body scans in malignant pheochromocytoma and paraganglioma.

Methods: Scintigrams obtained in 15 patients with malignant pheochromocytoma and paraganglioma were retrospectively analyzed. Diagnostic scans were performed with 111MBq of 123I-MIBG. Therapeutic doses of 131I-MIBG (5.55 to 7.40GBq) were administrated and whole body scans were obtained at 2 to 5 days after 131I-MIBG administrations. We compared the number of lesions and the lesion-to-referent count ratios at 6 hours and 24 hours of 123I-MIBG and at 2 to 5 days of 131I-MIBG.

Results: In comparison with the 6-hour images of 123I-MIBG, the 24-hour images of 123I-MIBG could detect more lesions in 8 patients. Post-treatment 131I-MIBG scans revealed new lesions in 8 patients compared with the 24-hour images of 123I-MIBG. The lesion-to-referent count ratios at 6 hours and 24 hours of 123I-MIBG and at 3 days of 131I-MIBG were increasing at later scanning time. There were significant differences in the lesion-to-referent count ratios between 6 hours and 24 hours of 123I-MIBG ($p = 0.031$), 6 hours of 123I-MIBG and 3 days of 131I-MIBG ($p = 0.020$), and 24 hours of 123I-MIBG and 3 days of 131I-MIBG ($p = 0.018$).

Conclusions: Low dose diagnostic 123I-MIBG whole body scan is inferior to post-treatment 131I-MIBG whole body scan in malignant pheochromocytoma and paraganglioma. Considering the scan timing of 123I-MIBG, 6-hour images might have no superiority compared with 24-hour images.

Keywords: pheochromocytoma; paraganglioma; MIBG; 123I; 131I.
Introduction

Metaiodobenzylguanidine (MIBG), which can be labeled with either 131I or 123I, mimics the neurotransmitter norepinephrine and specifically targets malignant cells of the sympathetic nervous system [1, 2]. Since 131I-MIBG was reported to visualize tumors of the adrenal medulla in the early 1980s [3, 4], 131I-MIBG and 123I-MIBG have been widely used for detecting lesions in patients with malignant neuroendocrine tumors, such as malignant pheochromocytomas, malignant paragangliomas, medullary thyroid carcinomas, carcinoid tumors and neuroblastomas [5-9]. 123I-MIBG has superiority over 131I-MIBG with diagnostic use, because the γ-ray energy of 123I (159keV) befits the image quality and lesion detectability for scintigraphy compared with that of 131I (364keV) [10-12]. Moreover, 123I offers favorable dosimetry compared to 131I, because of their γ-ray energy and their half-life (123I: 13.13 hours, 131I: 8.04 days) [13].

It has been reported that other imaging modalities may be useful in detecting neuroendocrine tumors. Many articles compared 123I-MIBG with 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET) or 18F-FDG PET/computed tomography (CT) have been reported. These articles did not show good concordance [14-17], therefore 123I-MIBG and 18F-FDG PET would possess complementary roles. 18F-3,4-dihydroxy-phenylalanine PET, 18F-fluorodopamine PET and 68Ga-DOTA peptides PET might be preferred in comparison with 123I-MIBG [17, 18]. However, the evidence for these radiopharmaceuticals is insufficient and these have not become widely used yet.

As a prelude to 131I-MIBG therapy, 123I-MIBG scintigraphy is essential for the confirmation of MIBG accumulation to lesions. After 131I-MIBG therapy, post-treatment 131I-MIBG scintigraphy is routinely used to assess tumor uptake rather than lesion detectability. Lesional detectability of 123I-MIBG scans was not always the same as that of post-treatment 131I-MIBG scans. Campbell et al. [19] reported a case in which the post-treatment 131I-MIBG image depicted more metastatic lesions compared with the 131I-MIBG diagnostic scan and 123I-MIBG scan in a patient with malignant pheochromocytoma. Fukuoka et al. [20] demonstrated that 3-day images of post-therapeutic 131I-MIBG had superiority over 6-hour images of low dose
diagnostic 123I-MIBG in patients with malignant pheochromocytomas, malignant paragangliomas and neuroblastomas. Considering the lesion-to-background count ratios of 123I-MIBG images, 6-hour images would be inferior to 24-hour images in detecting lesions. To our knowledge, most previous studies evaluated scintigrams only by visual assessment, and there is no literature that reports the quantitative analysis of the image based on the count density and the lesion detectability between 6 and 24-hour scans of diagnostic 123I-MIBG and post-therapeutic 131I-MIBG scans.

In this study, we compared low dose diagnostic 123I-MIBG scans obtained at 6 hours, at 24 hours, and post-treatment 131I-MIBG scans by visual and quantitative methods in detecting lesions of malignant pheochromocytoma and paraganglioma, and then evaluated the validity of the dose and the scanning time of 123I-MIBG scintigraphy.

Methods

Patients
We studied 15 consecutive patients who underwent first 131I-MIBG therapy for adult malignant pheochromocytoma and paraganglioma between March 2005 and March 2010. The patients comprised 9 males and 6 females, and the age range was 37 to 78 years (mean = 57.1 years). Twelve were malignant pheochromocytomas and three were malignant paragangliomas (Table 1). In all patients, we confirmed MIBG accumulations in the primary or metastatic lesions with diagnostic 123I-MIBG scintigraphy before 131I-MIBG therapy.

Low dose diagnostic 123I-MIBG scintigraphy
We performed 123I-MIBG scintigraphy after intravenous injection of 111MBq of 123I-MIBG (FUJIFILM RI Pharma Co., Ltd., Japan), using a dual-head gamma camera equipped with a low-medium energy general purpose collimator (Toshiba E-CAM, Japan or Siemens Medical Solutions Symbia, Germany), specifically designed for reduced the scatter and septal penetration of the small fraction of 123I high-energy photons. The activity of 123I-MIBG was assayed by the supplier to become 111MBq at noon of the administration day. In this study, the dose of 123I-MIBG was relatively low compared to the standard dose of 123I-MIBG in Western countries, which was approved up to 400MBq [13, 21], because only 111MBq of 123I-MIBG had
been available for adults due to Japanese regulations until October 2010. Whole body scans were obtained at 6 and 24 hours after 123I-MIBG administration with 15cm/min of scanning speed on a photo peak of 159keV with a 15% window.

131I-MIBG therapy and post-therapeutic scintigraphy

131I-MIBG therapy was performed 2 to 21 days (mean = 11.9 days) after diagnostic 123I-MIBG scintigraphy. To prevent thyroidal uptake of free iodine, oral administration of 200mg potassium iodide was commenced one day before 131I-MIBG administration and continued for up to 10 days post therapy. We intravenously administrated 5.55 to 7.4GBq (mean = 7.28GBq) of 131I-MIBG through fixed peripheral venous lines for about an hour using a lead-shielded infusion pump with monitoring vital signs for more than 6 hours from the beginning of 131I-MIBG administration. All patients were treated in the isolation room until radiation decreased to less than 30µSv/hr at 1m. All therapies were well tolerated. A whole body scan with therapeutic dose of 131I-MIBG was obtained once at 2 to 5 days (mean = 3.4 days) after injection with 15cm/min of scanning speed on a photo peak of 364keV with a 15% window, using a high energy collimator. Table 1 shows the dosage and the scanning time of 131I-MIBG therapy.

Visual evaluation

Two experienced nuclear medicine physicians of our institution, who were blinded to the findings of the other imaging modalities, evaluated the accumulations of 6 and 24-hour images of 123I-MIBG and a post-treatment 131I-MIBG image. They interpreted all foci except for physiological accumulation as abnormal uptake and defined their anatomical location. Diffuse accumulation at nasal cavity, salivary glands, thyroid, myocardium, liver and bladder were considered as physiological uptake. When small lesions or low MIBG uptake lesions are overlapped with physiological (e.g. liver) uptake, some lesions might be undetected. When their interpretation was discordant, they obtained consensus after conference. To compare the lesion detectability of 6 and 24-hour images of 123I-MIBG with a post-treatment 131I-MIBG image, we investigated the difference in the number of detected lesions in the following 4 sites: bone, lungs, liver and others.
Quantitative evaluation

As a quantitative evaluation, we used the uptake ratio. On anterior and posterior images at 24 hours of 123I-MIBG, a target region of interest (ROI) was set manually by tracing the margin of the most intense lesion and a referential ROI and a background (BG) ROI were set on the left thigh and the background. The same ROIs were used on each image at 6 hours of 123I-MIBG and at 3 days of 131I-MIBG. In cases where metastatic lesions existed in the left thigh, the right thigh was used as a referential ROI. The uptake ratio was calculated with each mean ROI count by the following formula: uptake ratio = (target ROI – BG ROI) / (referential ROI – BG ROI). We compared the uptake ratios at 6 hours and 24 hours of 123I-MIBG and at 3 days of 131I-MIBG. To standardize the scanning time, we evaluated 10 patients whose 131I-MIBG scans were obtained at 3 days after 131I-MIBG therapies.

Statistical analysis

The paired t-test was used for analysis of the sequential changes of the uptake ratios between 6 hours and 24 hours after 123I-MIBG injections and 3 days after 131I-MIBG administrations. A p value of less than 0.05 was considered as the significant difference.

Results

A total of 96 and 106 lesions were identified with 6 and 24-hour images of 123I-MIBG, respectively. 131I-MIBG post-treatment scans detected 170 lesions. Table 2 summarizes visual analyses. In comparison to the 6-hour images of 123I-MIBG, the 24-hour images of 123I-MIBG could detect more lesions in 8 (53%) of 15 patients. In all patients, the 6-hour images of 123I-MIBG had no advantage compared with the 24-hour images of 123I-MIBG in detecting lesions. In comparison between diagnostic 123I-MIBG scans and post-treatment 131I-MIBG scans, post-treatment 131I-MIBG scans had better lesional detectability than diagnostic 123I-MIBG scans in 8 (53%) of 15 patients. 123I-MIBG scans were not superior to 131I-MIBG scans in any cases. Table 3 shows the number of detected lesions in bone, lungs, liver and others with diagnostic 123I-MIBG scans and post-therapeutic 131I-MIBG scans. 123I-MIBG scans could detect lesions in 56% (64/115) of bone metastases, 64%
(9/14) of lung metastases, 88% (15/17) of liver metastases, 75% (18/24) of metastases in others, and 62% (106/170) of all lesions compared with post-therapeutic 131I-MIBG scans.

Fig. 1 shows time-course changes of uptake ratios in 10 patients whose 131I-MIBG scans were obtained at 3 days after 131I-MIBG therapies. The uptake ratios were higher at later scanning time. There were significant differences in the uptake ratios between 6 hours and 24 hours of 123I-MIBG ($p = 0.031$), 6 hours of 123I-MIBG and 3 days of 131I-MIBG ($p = 0.020$), and 24 hours of 123I-MIBG and 3 days of 131I-MIBG ($p = 0.018$).

Fig. 2 and Fig. 3 show the representative scans of 123I-MIBG and 131I-MIBG. In Figure 2, the 24-hour image of 123I-MIBG excelled in the lesion detectability compared with the 6-hour image of 123I-MIBG. The number of lesions between 123I-MIBG and 131I-MIBG was the same. However, the lesion was better visualized in the 131I-MIBG image than in the 123I-MIBG image, which was confirmed by the quantitative analysis using uptake ratios. Figure 3 shows that 131I-MIBG was superior to 123I-MIBG in both visual and quantitative assessment.

Discussion

In this study, we demonstrated with visual and quantitative methods that low dose 123I-MIBG (111MBq) scans were not suitable for detecting lesions compared with post-treatment 131I-MIBG scans.

Our results were likely due to at least two reasons. Firstly, the diagnostic dose of 123I-MIBG was significantly lower compared with the therapeutic dose of 131I-MIBG. In the report by Ali et al. [22], the combination of the modern gamma camera with a low energy collimator and 123I imaging showed a count rate of up to 20-fold greater compared with an equivalent activity of 131I, because of the characteristics of 123I and 131I. Therefore, a dose of 185MBq 123I was equivalent to almost 3.7GBq 131I in image quality in patients with thyroid cancer. Iwano et al. [23] reported that the diagnostic scan with 37MBq of 123I was not always predictive of subsequent therapeutic 131I uptake in detecting residual thyroid tissue and metastases of differentiated thyroid cancer. Donahue et al. [24] concluded that
post-treatment 131I whole body scans provided incremental clinically relevant information in addition to pre-treatment 123I whole body scans in 10% of patients with differentiated thyroid cancer. Considering the same pharmaceutical kinetics of 123I-MIBG and 131I-MIBG, a diagnostic dose of 123I-MIBG was assumed to be equal in imaging quality to a 20-fold greater 131I-MIBG dose. In our study, the doses of 123I-MIBG (111MBq) were less than one-fiftieth of the doses of 131I-MIBG (5.55 to 7.4GBq). To improve the lesion detectability with 123I-MIBG, the dose of 123I-MIBG should be increased. Considering that the standard doses of 131I-MIBG therapy for malignant pheochromocytoma and paraganglioma are more than 7.4GBq [25-27], more than 370MBq of 123I-MIBG might be desirable to detect lesions of malignant pheochromocytoma and paraganglioma.

Another likely reason for our results was the difference of scanning time after MIBG injections between 123I-MIBG and 131I-MIBG. In this study, the 24-hour images of 123I-MIBG could detect more lesions than the 6-hour images of 123I-MIBG in 8 (53%) of 15 patients. Furthermore, the 2 to 5-day images of 131I-MIBG were superior to the 24-hour images of 123I-MIBG in 8 (53%) of 15 patients. As shown in Figure 1, we demonstrated that the lesion-to-referent count ratios increased at later scanning time. These results indicated that early scan timing after 123I-MIBG injection was not recommended. The European Association of Nuclear Medicine guidelines suggest that scanning with 123I-MIBG is performed between 20 and 24 hours after injection and selected delayed images (never later than day 2) might be useful in the event of equivocal findings on day 1 [13, 28]. In contrast, the Japanese Ministry of Health, Labor and Welfare established that 123I-MIBG scanning was performed at 24 hours after injection and additional images might be obtained at 6 or 48 hours after administration if needed. Our results indicated that 6-hour images after 123I-MIBG injection would not be necessary. Even if small lesions or low uptake lesions are located in or near the kidneys and excretory route that may masked by uptake in these areas, 6-hour images may not aid the visualization of lesions because physiological uptake of MIBG is more intense in early image than late image.

Diagnostic scintigraphy with low dose 123I-MIBG has limitations in detecting lesions of malignant pheochromocytoma and malignant paraganglioma. The
possible discrepancy between low dose diagnostic 123I-MIBG and post-treatment 131I-MIBG scans should be taken into account when developing a treatment plan. An 131I-MIBG post-treatment scan might provide us with more clinical information in patients with malignant pheochromocytoma and malignant paraganglioma. We recommended that patients who had small lesions that were not detected with a low dose 123I-MIBG scan but confirmed with other imaging modalities, such as CT and magnetic resonance imaging, be considered for 131I-MIBG therapy if their primary lesion that had been surgically excised had accumulated MIBG.

Our study had some limitations. One limitation was that the dose of 123I-MIBG of our study was lower than that of the standard dose of 123I-MIBG in Western countries. Another limitation was that the scanning speed of 123I-MIBG scintigraphy was higher than that recommended by EANM guidelines (15cm/min compared to the guidance of 5cm/min) [13]. The low dose and the fast scanning speed of 123I-MIBG would decrease signal-to-noise ratio compared with the high dose and the slow scanning speed. Those would result in the reduction of not only the lesional detectability of visual evaluation but the uptake ratio of quantitative evaluation of 123I-MIBG scintigraphy. In this study, we did not evaluate the detectability of single photon emission computed tomography (SPECT)/CT. SPECT/CT is now getting popular as a daily practice. This would certainly enhance the detection of the lesion with in the areas of physiological uptake (e.g. liver) and the lesion that overlapped on the physiological uptake (e.g. bladder) on planar whole-body imaging.

In conclusion, a low dose diagnostic 123I-MIBG scan has limitations compared to post-treatment 131I-MIBG scan. Compared with a 24-hour image of 123I-MIBG, a 6-hour image of 123I-MIBG has no advantage in detecting lesions of malignant pheochromocytoma and malignant paraganglioma. The escalation of 123I-MIBG doses might be beneficial for the diagnosis of distribution of metastasis.
References

20 Fukuoka M, Taki J, Mochizuki T, Kinuya S. Comparison of diagnostic value of I-123 MIBG and high-dose I-131 MIBG scintigraphy including incremental value of SPECT/CT over planar image in patients with

Legends for illustrations

Fig. 1 Time-course changes of uptake ratios. The uptake ratios are higher at later scanning time. Because no abnormal accumulation is detected on the 6-hour image of 123I-MIBG in patient number 12 in table 1 and table 2, the paired t-tests are performed among 9 patients between 6 hours and 24 hours of 123I-MIBG and between 6 hours of 123I-MIBG and 3 days of 131I-MIBG and among 10 patients between 24 hours of 123I-MIBG and 3 days of 131I-MIBG.
Fig. 2 A 37-year-old female with pheochromocytoma, patient number 12 in table 1 and table 2. No abnormal accumulation is seen on the 6-hour image of 123I-MIBG. The 24-hour image of 123I-MIBG can identify a faint accumulation in the right mid abdomen and the 3-day image of 131I-MIBG can identify a strong accumulation in the same lesion (arrows). No additional uptake is detected on the 3-day image of 131I-MIBG. Uptake ratios of the right mid abdomen lesion are 3.55 and 5.80 on the 24-hour image of 123I-MIBG and the 3-day image of 131I-MIBG. The uptake ratio of the 6-hour image of 123I-MIBG cannot be calculated because no lesional uptake is detected on the 6-hour image of 123I-MIBG.
Fig. 3 A 78-year-old female with pheochromocytoma, patient number 3 in table 1 and table 2. A total of 7 lesions are detected in the bone with the 6 and 24-hour images of 123I-MIBG (narrow arrows on each anterior image of 123I-MIBG). Same lesions are detected (narrow arrows on the anterior image of 131I-MIBG) and 7 new lesions can be identified with the 3-day image of 131I-MIBG (wide arrows on the posterior image of 131I-MIBG). The uptake ratios of the lumbar spine (arrow heads on each anterior image of 123I-MIBG and 131I-MIBG) are 5.33, 9.21, and 27.07 on each image.
Tables

Table 1 Clinical characteristics and protocol of 131I-MIBG therapy

<table>
<thead>
<tr>
<th>Patient</th>
<th>131I-MIBG</th>
<th>Dose (GBq)</th>
<th>Scanning time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>43 M pheo</td>
<td>7.4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>46 M para</td>
<td>7.4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>78 F pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>76 M pheo</td>
<td>7.4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>52 M pheo</td>
<td>7.4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>63 M pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>45 M pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>75 M pheo</td>
<td>5.55</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>61 M para</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>69 M pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>60 F pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>37 F pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>54 F para</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>39 F pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>58 F pheo</td>
<td>7.4</td>
<td>3</td>
</tr>
</tbody>
</table>

MIBG, metaiodobenzylguanidine; pheo, malignant pheochromocytoma; para, malignant paraganglioma.
<table>
<thead>
<tr>
<th>Patient Number</th>
<th>123I-MIBG</th>
<th>131I-MIBG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>106</td>
</tr>
</tbody>
</table>

MIBG, metaiodobenzylguanidine.
Table 3 The number of detected lesions in bone, lung, liver and others with diagnostic 123I-MIBG scans and post-treatment 131I-MIBG scans

<table>
<thead>
<tr>
<th></th>
<th>Bone</th>
<th>Lung</th>
<th>Liver</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>123I-MIBG scan (n)</td>
<td>64</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td>106</td>
</tr>
<tr>
<td>131I-MIBG scan (n)</td>
<td>115</td>
<td>14</td>
<td>17</td>
<td>24</td>
<td>170</td>
</tr>
</tbody>
</table>

MIBG, metaiodobenzylguanidine.
Illustrations
Fig. 1
Fig. 2

I-123 MIBG

- 6 hour Anterior
- Posterior
- 24 hour Anterior
- Posterior

I-131 MIBG

- 3 day Anterior
- Posterior
Fig. 3

I-123 MIBG

6 hour

Anterior Posterior

24 hour

Anterior Posterior

I-131 MIBG

3 day

Anterior Posterior