<table>
<thead>
<tr>
<th>校名</th>
<th>KURA 金沢大学学術情報リポジトリ 金沢大学 Kanazawa University Repository for Academic resources</th>
</tr>
</thead>
</table>

"KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。
KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。
著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。
A novel immune evasion mechanism of LMP-1, an EBV-primary oncogene, in nasopharyngeal carcinoma.

Tomokazu Yoshizaki

Division of Otolaryngology, Head and Neck Surgery,

Graduate School of Medical Science, Kanazawa University,

13-1 Takaramachi,

Kanazawa 920-8641,

JAPAN

e-mail: tomoy@med.kanazawa-u.ac.jp
Abstract

Nasopharyngeal carcinoma is an Epstein-Barr virus (EBV)-associated tumor. Viruses that are associated with malignant transformation have evolved unique mechanisms to interfere with this interaction to evade antiviral T-cell responses. EBV exploits many immune evasive strategies to successfully establish a latent infection in B cells. CD8^+ T-cell responses to LMP-1 are generally very low and rarely detected in healthy virus carriers. Activation of the NF-kB pathway by EBV–LMP-1 leads to an up-regulation of the MHC class I antigen–processing pathway. Paradoxically, LMP-1 itself induces a subdominant CD8^+ T-cell response and appears to have evolved to avoid immune recognition. An expression of LMP-1 in human cells enhanced the trans-presentation of CD8^+ T-cell epitopes, however, cis-presentation of LMP-1–derived epitopes was severely impaired. Deletion of the first transmembrane domain of LMP-1, which prevented self-aggregation, significantly enhanced cis-presentation of T-cell epitopes from this protein, whereas it lost its ability to up-regulate trans-presentation. These results delineate a novel mechanism of immune evasion, which renders a virally
encoded oncogene inaccessible to the conventional MHC class I pathway limiting its 
cis-presentation.

Epstein-Barr virus (EBV) exploits many immune evasive strategies to
successfully establish a latent infection in B cells and epithelial malignant tumors such
as nasopharyngeal carcinoma (NPC). Analysis of the role of individual EBV latent
antigens in the regulation of antigen-processing genes indicated that latent membrane
protein-1 (LMP-1) was sufficient to up-regulate expression of transporters associated
with antigen processing and trans-presentation of MHC class I–restricted epitopes in B
cells1). Subsequent studies demonstrated that the immunomodulatory effects of LMP-1
are mediated through C-terminal activator regions (CTAR1 and CTAR2), which are
involved in the induction of the nuclear factor–κB (NF-κB). At the same time, LMP-1
promotes invasion and metastasis through these intracellular activation domains2-4).
Paradoxically, the population of CD8+ T-cell that responses to LMP-1 is generally very
low and rarely detected in healthy virus carriers, suggesting that LMP-1 may limit its
*cis*-presentation through the MHC class I pathway. We have delineated a mechanism by which LMP-1 limits its self-presentation without compromising its ability to modulate *trans*-presentation of CD8⁺ T-cell epitope5, 6)

To assess *trans*-presentation of LMP-1, we transfected multiple LMP-1 sequences to epithelial cell lines. Although all LMP-1 variants up-regulated the expression of MHC class I on a human epithelial cell line, C33A, considerable activation of LMP-1-specific T cells was only evident after incubation with peptide-sensitized cells. In contrast, LMP-1 expression in C33A cells enhanced *trans*-presentation of CD8⁺ T-cell epitopes from another EBV-encoded membrane protein, LMP-2A. Collectively, these results suggested that, despite its capacity to up-regulate *trans*-presentation via the MHC class I pathway, LMP-1 limits its self-presentation to CD8⁺ T cells.

Much of the data presented are based on either stable or transient expression of LMP-1. To confirm these observations, we assessed endogenous presentation of LMP-1 epitopes in EBV-transformed LCLs. Although activation of LMP-2A specific T cells was evident after incubation with HLA-matched LCLs, very low levels of activation of T cells
specific for multiple LMP-1–encoded peptide epitopes was observed. Activation of LMP-1–specific T cells could be detected after incubation with peptide-sensitized LCLs. To investigate the mechanism for this immune evasion, we tested a series of LMP-1 expression vectors with mutations in the CTAR1 and/or CTAR2 domain; and a deletion mutant commencing at the second methionine of LMP-1 (Δ1-43LMP-1-GFP), which removes the first trans-membrane domain. This domain has been shown to have immunomodulatory effect, and Δ1-43LMP-1 has been used for expanding LMP-1-specific T cells. Although mutations within the CTAR domains had no impact on the presentation of LMP-1 epitopes, deletion of the first trans-membrane domain enhanced endogenous presentation of HLA class I–restricted epitopes. Consistent with previous studies, intracellular localization analysis using fluorescent microscopy revealed that, although full-length LMP-1 and its CTAR mutants formed large aggregates in the perinuclear region, Δ1-43LMP-1-GFP lost its ability to aggregate. This enhanced presentation was not the result of increased expression of Δ1-43LMP-1-GFP compared with full-length LMP-1. These observations indicate that, although the NF-κB signaling domains had no impact on cis-presentation of LMP-1 epitopes, aggregation of
this protein (a critical requirement for trans-presentation) limits its accessibility to the MHC class I processing machinery.

The data presented in this meeting indicate that, in addition to constraining its cis-presentation through aggregation, epitopes encoded within LMP-1 protein are most probably destroyed by cellular proteasomes, providing a dual strategy by which LMP-1 limits self-presentation to CD8⁺ T cells7).

Acknowledgement

In addition to the author, this work was contributed by Corey Smith, Naohiro Wakisaka, and Rajiv Khanna.

References


7) Smith C, Wakisaka N, Crough T, Peet J, Yoshizaki T, Beagley L, Khanna R.

Discerning regulation of *cis*- and *trans*-presentation of CD8\(^+\) T-cell epitopes by EBV-encoded oncogene LMP-1 through self-aggregation. Blood 113:6148-6152, 2009