KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。
KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。
著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。

Title
CCL2/CCR2 augments the production of transforming growth factor-beta1, type 1 collagen and CCL2 by human CD45-/collagen 1-positive cells under high glucose concentrations

Author(s)
Hara, Akinori; Sakai, Norihiko; Furuichi, Kengo; Sakai, Yoshio; Takeya, Motohiro; Bucala, Richard; Mukaida, Naofumi; Takuwa, Yoh; Matsushima, Kouji; Kaneko, Shuichi; Wada, Takashi

Citation
Clinical and Experimental Nephrology, 17(6): 793-804

Issue Date
2013-12

Type
Journal Article

URL
http://hdl.handle.net/2297/36476

© 2013 Japanese Society of Nephrology 日本腎臓学会 許可を得て登録
日本腎臓学会 許可を得て登録

http://dspace.lib.kanazawa-u.ac.jp/dspace/
CCL2/CCR2 augments the production of transforming growth factor-beta1, type 1 collagen and CCL2 by human CD45-/collagen 1-positive cells under high glucose concentrations

Akinori Hara · Norihiko Sakai · Kengo Furuichi · Yoshio Sakai · Motohiro Takeya · Richard Bucala · Naofumi Mukaida · Yoh Takuwa · Kouji Matsushima · Shuichi Kaneko · Takashi Wada

Received: 13 February 2012 / Accepted: 11 March 2013 / Published online: 6 April 2013 © Japanese Society of Nephrology 2013

Abstract
Background The migration and activation of circulating profibrotic cells including fibrocytes by the action of the chemokine/chemokine receptor system has been implicated in pathological fibrogenesis. In the present study, the involvement of collagen 1 (Col1)-producing cells, CD45-positive/collagen-1-positive (CD45+/Col1+) cells originally named as fibrocytes via CC chemokine receptor 2 (CCR2), a cognate receptor of CCL2/monocyte chemoattractant protein, was examined in diabetic conditions.

Methods Human CD45+/Col1+ cells originating from the peripheral blood of healthy volunteers were incubated with high concentrations of D-glucose or D-mannitol as an osmotic control for 12, 24 or 48 h. In addition, these cells were preincubated with CCL2 under high glucose concentrations. We also examined the effects of the inhibitors of glucose transporters (GLUTs), reactive oxygen species or CCR2 on the expression of transforming growth factor beta1 (TGF-β1), pro-α1 chain of Col1 (COL1A1), and CCL2.

Results Stimulation of CD45+/Col1+ cells with high glucose concentrations increased the mRNA and protein levels of TGF-β1 and CCL2 and those of pro-COL1A1, and this effect was mediated in part by increased osmolality. Preincubation of the cells with cytochalasin B (a GLUT inhibitor) or N-acetylcysteine (an antioxidant) blocked the stimulatory effect of high glucose concentrations on these profibrotic molecules. In addition, preincubation of the cells with CCL2 enhanced the high glucose-induced upregulation of TGF-β1, pro-COL1A1 and CCL2 and migration of the cells, and this effect was partly inhibited by treatment with CCR2 inhibitors.

A. Hara · N. Sakai · K. Furuichi · S. Kaneko
Department of Disease Control and Homeostasis, Kanazawa University, Kanazawa, Japan

Y. Sakai
Department of Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan

M. Takeya
Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

R. Bucala
Department of Medicine, Yale University School of Medicine, New Haven, CT, USA

N. Mukaida
Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan

Y. Takuwa
Department of Physiology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan

K. Matsushima
Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

T. Wada (✉)
Division of Nephrology, Department of Laboratory Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8641, Japan

e-mail: twada@m-kanazawa.jp
Conclusion These results suggest that CD45+/Col1+ cells may be directly involved, in part through CCL2/CCR2 signaling, in the fibrotic process under diabetic conditions.

Keywords Diabetes mellitus · CCR2 · Fibrosis · Bone marrow-derived cells · Fibrocyte · CD45

Introduction

Diabetic nephropathy is one of the major microvascular complications of diabetes. It is by far the most common cause of end-stage kidney failure and is epidemic worldwide [1, 2]. In the course of the disease progression, the accumulation of matrix proteins resulting in glomerulosclerosis and interstitial fibrosis is a prominent feature of the disease [2]. In this histopathological picture, the infiltration of bone marrow-derived inflammatory cells such as monocytes/macrophages into the diseased kidneys is a hallmark of the progression of diabetic nephropathy [3, 4]. Infiltrated monocytes/macrophages release lysosomal enzymes, nitric oxide, and transforming growth factor beta (TGF-β), which have an essential role in kidney damage [2, 5]. Recent studies have uncovered that CCL2, also termed monocyte chemoattractant protein-1, plays an important role through its cognate receptor, CCR2 and its downstream signal transduction system in the pathogenesis of diabetic nephropathy as well as glomerulonephritis [6–9].

In recent years, fibrocytes, a precursors to several mature cell lineages in monocyte fraction of peripheral blood, have been shown to be involved in the pathogenesis of organ fibrosis through distinct chemokine/chemokine receptor systems [10–13]. These cells are associated with fibrotic conditions such as lung and kidney fibrosis, bronchial asthma, and skin wounds [12–15]. Fibrocytes are identified by the coexpression of the stem cell marker CD34, the leukocyte common antigen CD45, and extracellular matrix proteins such as type 1 collagen (Col1) [10]. Although a recent study revealed that markers of CD45RO, 25F9 and S100A8/A9 distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts [16], until now fibrocytes have been identified by dual positivity of CD34 or CD45 and Col1 or pro-collagen 1 (pro-Col1) [17]. Furthermore, fibrocytes express chemokine receptors such as CCR2, CCR7 and CXCR4, and the function and differentiation of fibrocytes are influenced by various mediators such as TGF-β [13, 17]. While CD45 and pro-Col1 dual-positive (CD45+/pro-Col1+) cells may be found in human diabetic nephropathy and may have a role in the progression of the disease [15], the specific cellular and molecular mechanisms involved in the development and/or progression of diabetic complications, especially in the kidney, remains to be investigated.

In the present study, we examined the direct involvement of CD45+/Col1+ cells in the development and/or progression of the profibrotic process under high glucose with or without the costimulation of CCL2. We report here that high glucose concentrations stimulate the production of TGF-β1, pro-Col1 and CCL2, and cell migration, which are augmented partly by CCL2/CCR2 signaling, in human CD45+/Col1+ cells in vitro.

Materials and methods

Differentiation and isolation of human CD45+/Col1+ cells originating from peripheral blood

CD45+/Col1+ cells were harvested and cultured as previously reported [18, 19]. Briefly, total peripheral blood mononuclear cells were isolated from venous blood drawn from healthy donors by centrifugation on a Ficoll-Metrizoate density gradient (d = 1.077 g/ml; Lymphoprep; Nycomed, Oslo, Norway) following the manufacturer’s protocol. After 2 days of culture in a tissue culture flask using Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4500 mg/l D-glucose (Gibco BRL) supplemented with 20 % heat-inactivated fetal calf serum (FCS) (Gibco BRL), 100 U/ml penicillin (Gibco BRL), and 100 μg/ml streptomycin (Gibco BRL), non-adherent cells were removed by gentle aspiration, and media were replaced. After 10–12 days, adherent cells were lifted by incubation in ice-cold 0.05 % ethylenediaminetetraacetic acid in phosphate-buffered saline (PBS). The crude cell preparations were then depleted by immunomagnetic selection of contaminating T cells, B cells, and CD14+ monocytes using pan-T, anti-CD2; pan-B, anti-CD19; and anti-CD14 monoclonal antibody coated with microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) [19]. Cell purity was examined by flow cytometry using both fluorescein isothiocyanate-conjugated mouse anti-human CD45 monoclonal antibody (Becton Dickinson/Pharminogen, San Diego, CA, USA) and R-phycocerythrin-labeled rabbit antihuman type 1 collagen polyclonal antibodies (Millipore, Temecula, CA, USA) and confirmed as >92 % pure population of cells coexpressing CD45 and type 1 collagen, as described previously [19]. With regard to ethical considerations, the medical ethics committee of Kanazawa University approved the experiments which were conducted with the understanding and the consent of each participant.

Culture conditions

To examine the effect of glucose and CCL2 on function of CD45+/Col1+ cells, CD45+/Col1+ cells were incubated...
with D-glucose (Wako Chemicals Inc., Tokyo, Japan) and/or CCL2 in a dose- and time-dependent manner. Briefly, CD45+/Col1+ cells (1 x 10^6/ml) were cultured in plastic tissue culture plates in DMEM supplemented with 0.5 % heat-inactivated FCS (Gibco BRL) at 37 °C in a humidified atmosphere with 5 % CO2 for 24 h after isolation in the presence of increasing concentrations (5–30 mmol/l) of D-glucose using D-mannitol (Wako Chemicals Inc.) as osmotic controls. In addition, CD45+/Col1+ cells were cultured for an increasing period of time (0–48 h) in DMEM supplemented with 0.5 % heat-inactivated FCS in the presence of 30 mmol/l D-glucose or 5 mmol/l D-glucose with 25 mmol/l D-mannitol. In addition, experiments to explore the role of glucose-specific signaling pathways in the production of TGF-β1, pro-Col1 and CCL2, CD45+/ Col1+ cells were treated with D-glucose or D-mannitol in the presence of cytochalasin B (Sigma-Aldrich, Inc., St. Louis, MO, USA), a well-known glucose transporter (GLUT) inhibitor [20], at 5 μmol/l for 24 h. According to earlier dosing studies in our laboratory, this concentration of cytochalasin B did not influence the viability of cultured CD45+/Col1+ cells as assessed by Trypan blue dye exclusion (data not shown). In addition, to investigate the role of reactive oxygen species (ROS) in this pathological process, N-acetylcysteine (NAC) (Sigma-Aldrich, Inc.) was used as an antioxidant at 2 mmol/l for 24 h. Furthermore, to examine whether CCL2/CCR2 is responsible for the production of TGF-β1, pro-Col1 and CCL2, propagermannium (kindly provided by Sanwa Kagaku) and RS-504393 (Sigma-Aldrich, Inc.) were preincubated in DMEM supplemented with 0.5 % heat-inactivated FCS (3 μg/ml) or RS-504393 (1 μM) into each culture medium for 30 min. Subsequently, CD45+/Col1+ cells were incubated in the presence of recombinant human CCL2 (50 ng/ml) (R&D Systems Inc., MN, USA) for 48 h.

Table 1 Oligonucleotide primer pairs used for RT-PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Oligonucleotide primers 5'-3'</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>S TCCACGAGCAGCATTTCCGAGA</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>AS ATACCTGGAAGCACATGGCC</td>
<td></td>
</tr>
<tr>
<td>GLUT2</td>
<td>S CACTGATGCTGATGTCATGGGC</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>AS ATGTGAAACAGGTTAAGGCCC</td>
<td></td>
</tr>
<tr>
<td>GLUT3</td>
<td>S TTCAAGAGCCTCATCTAGCC</td>
<td>458</td>
</tr>
<tr>
<td></td>
<td>AS GGTCTCAAGGCTTGAAGA</td>
<td></td>
</tr>
<tr>
<td>GLUT4</td>
<td>S GGCATGTGGCTGGTGCCCATC</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>AS GGGTTTCACCCTCTGCTTAA</td>
<td></td>
</tr>
<tr>
<td>CCR2</td>
<td>S GGATTTGAAAGAGACGATT</td>
<td>766</td>
</tr>
<tr>
<td></td>
<td>AS TCTCACTGCCTATGCTCTT</td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>S CCCATCCACATCTCAGAGGAC</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td>AS CCAGTGGAGGTCGTTTCCCCAGC</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of GLUT isoforms and CCR2 by reverse transcription-polymerase chain reaction (RT-PCR)

Transcripts of GLUT isoforms were detected using RT-PCR. In brief, total RNA was extracted from cultured human CD45+/Col1+ cells under normal or high concentrations of glucose, and complementary DNA (cDNA) was reverse-transcribed from 1 μg total RNA using a RT-PCR kit (Takara Shuzo, Tokyo, Japan) as previously described [14, 23]. The cDNA product was amplified by PCR as follows—incubation for 3 min at 94 °C, followed by 30 cycles of 45 s at 94 °C, 1 min at 56 °C, and 1 min at 72 °C and a final extension for 7 min at 72 °C [24]. Primers for human GLUT1, GLUT2, GLUT3, and GLUT4 were used to examine expression of GLUT1, GLUT2, GLUT3, and GLUT4, respectively (Table 1) [24]. Similarly, to determine CCR2 transcripts, the cDNA products from total RNA were amplified by semiquantitative RT-PCR using that from a human monocyte cell line, THP-1 (DS Pharma Biomedical, Osaka, Japan), as a positive control. Primers for CCR2 were used to detect CCR2 transcripts (Table 1) [22]. The amplification profile for CCR2 was described previously [22]. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used for PCR controls (Table 1) [24]. Photographs of DNA-stained agarose gels were evaluated by band intensity comparison of GAPDH expression versus GLUT expression using computer image analysis [22].

Analysis of gene expression by real-time quantitative PCR

To determine transcripts of the pro-α1 chain of Col1 (pro-COL1A1), TGF-β1, and CCL2, total RNA was extracted from cultured human CD45+/Col1+ cells as described above. Quantitative real-time RT-PCR was performed on the ABI Prism 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA, USA) as previously described [19, 22]. Real-time PCR was performed in a total volume of 20 ml, containing 1 ml cDNA sample, TaqMan gene expression assays (Applied Biosystems), and TaqMan universal PCR master mix (Applied Biosystems), using the universal temperature cycles—10 min at 94 °C, followed by 40, two temperature cycles (15 s at 94 °C and 1 min at 60 °C). Assay IDs of TaqMan gene expression assays were Hs00234140 for CCL2, Hs00171257 for TGF-β1, Hs00164004 for COL1A1 and Hs99999905 for GAPDH.
Enzyme-linked immunosorbent assay (ELISA)

To determine the protein levels of CCL2 and TGF-β1, supernatants of the samples which were prepared by centrifuging at 1,500 rpm for 10 min and then storing 1 ml at −80 °C until use, were evaluated using the commercial Quantikine Human CCL2 and TGF-β1 ELISA kit, respectively, in accordance with the protocol specified by the manufacturer (R&D Systems Inc.).

Cell migration assay

To examine the degree to which cultured human CD45+/Col1⁺ cells migrate in vitro in response to high glucose concentrations and CCL2/CCR2 signaling, cell migration assay was performed using the Cultrex 96 Well Cell Migration Assay Kit in accordance with the protocol specified by the manufacturer (Trevigen, Inc., Gaithersburg, MD, USA).

Statistical analysis

The mean and SEM were calculated on all of the parameters determined in this study. Statistical analyses were performed using Kruskal–Wallis test and analysis of variance. P < 0.05 was accepted as statistically significant.

Results

Effect of high glucose concentrations on expression of TGF-β₁ and pro-COL1A1 by isolated CD45+/Col1⁺ cells

The impact of high glucose concentrations on isolated human CD45+/Col1⁺ cells was examined in vitro. The exposure of human CD45+/Col1⁺ cells to D-glucose resulted in the induction of TGF-β₁ and pro-COL1A1 mRNA in a time- and dose-dependent manner (Fig. 1a, b, e, f). In addition to mRNA up-regulation of TGF-β₁, the concentration of the TGF-β₁ protein in the supernatant was increased by stimulation with high glucose concentrations (Fig. 1c, d). When human CD45+/Col1⁺ cells were incubated with D-mannitol, there was a similar, albeit lower magnitude, dose- and time-dependent increase in mRNA and protein levels of TGF-β₁ and pro-COL1A1 mRNA was observed (Fig. 1a–f). After 24 h, mRNA and protein levels of TGF-β₁ and pro-COL1A1 mRNA were significantly higher in D-glucose-treated human CD45+/Col1⁺ cells compared with those treated with D-mannitol (Fig. 1b, d, f).

Effect of high glucose concentrations on expression of CCL2 by isolated CD45+/Col1⁺ cells

To examine the effect of high glucose concentrations on the expression of CCL2 in human CD45+/Col1⁺ cells, the cells were incubated for 24 h with high glucose concentrations. Stimulation with high glucose enhanced the levels of CCL2 mRNA as well as protein in a dose-dependent manner (Fig. 2a, c). In addition, human CD45+/Col1⁺ cells were cultured in 30 mmol/l D-glucose or 25 mmol/l D-mannitol with 5 mmol/l D-glucose for up to 48 h. Enhanced mRNA levels of CCL2 were observed in a time-dependent manner, which were followed by the up-regulation of CCL2 protein (Fig. 2b, d). As well as the expression of TGF-β₁ and pro-COL1A1, high osmolality also increased mRNA and protein levels of CCL2 (Fig. 2a–d). After 24 h, mRNA and protein levels of CCL2 were significantly higher in D-glucose-treated human CD45+/Col1⁺ cells compared with those treated with D-mannitol (Fig. 2b, d).

Expression of mRNAs for GLUTs

The expression of GLUT isoforms in human CD45+/Col1⁺ cells cultured with 5 or 30 mmol/l glucose was examined by RT-PCR. The expression of GLUT1 and GLUT3 mRNA was detectable under normal glucose concentrations, and their expression was downregulated at 24 h after incubation with high glucose concentrations (Fig. 3a). Transcripts for the mRNA for GLUT2 and GLUT4 were not detected by this qualitative analysis (Fig. 3a).

Effect of inhibition of glucose transport or ROS on the expression of TGF-β₁ and pro-COL1A1

Cytochalasin B, an antioxidant and an inhibitor of GLUT and NAC, was used to determine the contribution of glucose-specific mechanisms and their downstream pathways leading to the expression of TGF-β₁ and pro-COL1A1 in human CD45+/Col1⁺ cells. Human CD45+/Col1⁺ cells were incubated for 24 h with control medium (5 mmol/l D-glucose), 30 mmol/l D-glucose, or 25 mmol/l D-mannitol with 5 mmol/l D-glucose in the presence or absence of 5 μmol/l of cytochalasin B or 2 mmol/l of NAC. D-glucose and mannitol significantly increased mRNA and protein levels of TGF-β₁ and pro-COL1A1 mRNA, when compared to the control condition (Fig. 3b, d, f). In the presence of cytochalasin B or NAC, the D-glucose-induced increase in the expression of TGF-β₁ and pro-COL1A1 mRNA was significantly reduced (Fig. 3b, f). Similarly, the concentration of the TGF-β₁
protein in the supernatant was decreased in the presence of cytochalasin B or NAC (Fig. 3d). The levels of TGF-β1 mRNA and protein and pro-COL1A1 mRNA detected in the presence of cytochalasin B were not significantly different to those induced by 25 mmol/l D-mannitol with 5 mmol/l D-glucose (Fig. 3b, d, f). In parallel experiments, the D-mannitol-induced increase in the expression of TGF-β1 mRNA and protein and pro-COL1A1 mRNA was not changed by the simultaneous presence of cytochalasin B or NAC (Fig. 3c, e, g).

Effect of inhibition of glucose transport or ROS on the expression of CCL2

Similarly, to examine the effect of inhibition of glucose transport and oxidative stress on the expression of CCL2 in human CD45⁺/Col1⁺ cells, the cells were incubated for 24 h with or without 5 μmol/l of cytochalasin B or 2 mmol/l of NAC under high glucose concentrations or increased osmolality. The high glucose-induced increase in the expression of CCL2 mRNA and protein was significantly...
reduced in the presence of cytochalasin B or NAC (Fig. 4a, c). CCL2 mRNA and protein levels in the presence of cytochalasin B or NAC were not significantly different to those induced by 25 mmol/l D-mannitol with 5 mmol/l D-glucose (Fig. 4a, c). On the other hand, the D-mannitol-induced increase in the expression of CCL2 mRNA and protein was not significantly reduced by the simultaneous presence of cytochalasin B or NAC (Fig. 4b, d).

Effect of CCL2 and CCR2 inhibition on the expression of TGF-β1, pro-COL1A1 and CCL2 and cell migration under high glucose concentrations

To examine the expression of CCR2 on CD45+/Col1+ cells under diabetic conditions, isolated CD45+/Col1+ cells first were cultured for 48 h under high glucose concentrations. 30 mmol/l D-glucose led to an increase in the expression of CCR2 mRNA, but this finding was also observed in the osmotic control (Fig. 5a). Secondly, to investigate the impact of CCL2 as well as high glucose on the expression of TGF-β1, pro-COL1A1 and CCL2 and on the extent of migration of the cells, isolated CD45+/Col1+ cells were cultured under the same conditions as described above for 48 h but with CCL2. The stimulation with CCL2 synergistically enhanced mRNA level of TGF-β1, pro-COL1A1 and CCL2 (Fig. 5b, d, e) and the migration rate of the cells (Fig. 5f). With regard to the expression of TGF-β1, its protein level in the supernatant was also increased by stimulation with CCL2 (Fig. 5c). Finally, to determine whether the CCL2-induced up-regulation of these molecules and increase in cell migration rate are dependent on CCR2, propagermanium and RS-504393, which are inhibitors of CCL2/CCR2 signaling, were applied [21, 22]. The up-regulated expression of

Fig. 2 Effect of increasing concentrations of D-glucose on the expression of CCL2 in human isolated CD45+/Col1+ cells. Dose effect of increasing concentrations of D-glucose (filled square) or D-mannitol (open square) on the induction of CCL2 mRNA (a) and protein (c) synthesis. Data presented are the mean ± SEM from three separate experiments performed with CD45+/Col1+ cells isolated from different donors. 5G, 5 mmol/l D-glucose; 15G, 15 mmol/l D-glucose; 30G, 30 mmol/l D-glucose; 5G + 10 M, 5 mmol/l D-glucose + 10 mmol/l D-mannitol; 5G + 25 M, 5 mmol/l D-glucose + 25 mmol/l D-mannitol. *p < 0.05 compared with 5 mmol/l D-glucose. **p < 0.05 compared with 25 mmol/l D-mannitol with 5 mmol/l D-glucose. Time course of 30 mmol/l D-glucose (filled square) or 25 mmol/l D-mannitol with 5 mmol/l D-glucose (open square)-mediated induction of CCL2 mRNA (b) and protein (d) synthesis. Data presented are the mean ± SEM from three separate experiments performed with CD45+/Col1+ cells isolated from different donors. *p < 0.05 compared with 0 h time point, #p < 0.05 compared with 25 mmol/l D-mannitol with 5 mmol/l D-glucose.
Fig. 3 Expression of GLUT isoforms and effect of cytochalasin B and N-acetylcysteine on the production of TGF-β1 and pro-COL1A1 in human isolated CD45⁺/Col1⁺ cells. The expression of GLUT isoforms on human CD45⁺/Col1⁺ cells under normal or high glucose concentrations was assessed by RT-PCR (a). Effect of cytochalasin B and N-acetylcysteine on 30 mmol/l D-glucose-induced TGF-β1 mRNA (b), TGF-β1 protein (d) and pro-COL1A1 mRNA (f) synthesis in human CD45⁺/Col1⁺ cells. Data presented are the mean ± SEM from three separate experiments performed with CD45⁺/Col1⁺ cells isolated from different donors. 5G, 5 mmol/l D-glucose; 30G, 30 mmol/l D-glucose; 5G + 25 M, 5 mmol/l D-glucose + 25 mmol/l D-mannitol; Cyt. B cytochalasin B; NAC N-acetylcysteine.

*p < 0.05 compared with 5 mmol/l D-glucose. #p < 0.05 compared with 30 mmol/l D-glucose alone. Effect of cytochalasin B on induction of TGF-β1 mRNA (e), TGF-β1 protein (e) and pro-COL1A1 mRNA (G) synthesis by 25 mmol/l D-mannitol with 5 mmol/l D-glucose in human CD45⁺/Col1⁺ cells. Data presented are the mean ± SEM from three separate experiments performed with CD45⁺/Col1⁺ cells isolated from different donors. 5G, 5 mmol/l D-glucose; 30G, 30 mmol/l D-glucose; 5G + 25 M, 5 mmol/l D-glucose + 25 mmol/l D-mannitol; Cyt. B cytochalasin B; NAC N-acetylcysteine.

*p < 0.05 compared with 5 mmol/l D-glucose. None of the differences are statistically significant between 25 mmol/l D-mannitol with 5 mmol/l D-glucose and 25 mmol/l D-mannitol with 5 mmol/l D-glucose and cytochalasin B or N-acetylcysteine.
TGF-β, pro-COL1A1 and CCL2 mRNA and TGF-β protein were reduced by pretreatment with propagermanium or RS-504393 using 30 mmol/l d-glucose, although reduction of the expression of these molecules using 25 mmol/l d-mannitol with 5 mmol/l d-glucose was not statistically significant (Fig. 5b–e). The increase in percent migration of the cells was also inhibited by pretreatment with 3 μg/ml of propagermanium (Fig. 5f). These findings suggest that the CCL2-dependent migration and fibrogenic response in CD45+/Col1+ cells under high glucose concentrations are regulated, in part, by CCR2 signaling.

Discussion

The present study demonstrates that stimulation with high glucose concentrations and CCL2 increased the expression of TGF-β, pro-Coll, and CCL2 and migration rate, while inhibition of glucose transport, ROS or CCR2 decreased the levels of these molecules and cell migration in isolated human CD45+/Col1+ cells. These results suggest that the function of CD45+/Col1+ cells is regulated by glucose and CCL2/CCR2 signaling.

Fibrocytes, identified by dual positivity of CD45 and pro-Col1, are now recognized to be involved in the...
pathogenesis of a wide variety of focal and diffuse fibrosing disorders including those localized to the skin, lungs, liver, kidney, pancreas, and bladder, and a more diffuse involvement as seen in atherosclerosis and in tumors [13, 25]. Fibrocytes express a number of chemokine receptors including CCR2, and specific chemokine/chemokine receptor signals are critical for the recruitment of fibrocytes to sites of tissue injury [17, 25]. In our previous study,
CD45⁺/Col1⁺ cells were present in human diabetic kidneys, and the number of the cells in kidney correlated well with the severity of tubulointerstitial lesions, the number of CD68-positive macrophages, and urinary CCL2 levels [15]. These findings prompted us to examine the direct effect of high glucose concentrations on the activation of human fibrocytes in vitro. The stimulation of isolated CD45⁺/Col1⁺ cells with high glucose concentrations enhanced the expression of pro-COL1A1, TGF-β₁, and CCL2, although this effect was mediated partly by increased osmolality. In white blood cells, the increase in glucose utilization is a prominent feature during the immune response, and this effect depends on the function of specific GLUT isoforms [26]. Among GLUT isoforms, a recent study demonstrated that GLUT1, GLUT3, and GLUT4 were expressed on the plasma membrane of resting and activated white blood cells [27]. The present study revealed that CD45⁺/Col1⁺ cells also expressed GLUT1 and GLUT3 and that excessive glucose transport across the plasma membrane and the following pathological processes in this particular cell were blocked by cytochalasin B and NAC, respectively. A number of studies have suggested a role for glucose and oxidative stress in modulating cellular inflammatory responses [6]. Incubation of endothelial cells, monocytes/macrophages, mesangial cells in kidney, or peritoneal mesothelial cells with high concentrations of glucose leads to induction of expression of inflammatory cytokine/chemokine genes including TNF-α, interleukin-1β, TGF-β, and CCL2 and generation of ROS [28–32]. Urinary and serum levels of CCL2 were higher in patients with diabetes than in normal subjects, and serum CCL2 levels correlated with plasma glucose [4, 33]. With regard to oxidative stress, serum 8-hydroxy-guanine levels or urinary reactive carbonyl derivatives in diabetic patients with nephropathy were higher than in healthy controls [34, 35]. These basic and clinical findings suggest that CD45⁺/Col1⁺ cells may interact with these cells and participate in inducing and augmenting inflammatory and fibrosing processes by producing these cytokines and chemokines under diabetic conditions.

In experiments where human CD45⁺/Col1⁺ cells were exposed to mannitol, there were also time- and dose-dependent increases in the expression of pro-COL1A1, TGF-β₁, and CCL2, although the level was lower than that induced by equivalent d-glucose concentrations. These data suggest that while d-glucose-driven stimuli significantly contribute to expression of these molecules in CD45⁺/Col1⁺ cells, osmolality-driven events also contribute to CD45⁺/Col1⁺ cells activation, as previously observed in other cell types [30, 32]. The exact mechanism by which hyperosmolality activates cellular function of CD45⁺/Col1⁺ cells has not been elucidated. In other cell systems, there are a variety of molecular signals that respond to alterations in cell volume and osmosensors or volume sensors responding to these signals, as described elsewhere [36]. The early signals of volume perturbation include integrins, the cytoskeleton, receptor tyrosine kinases, and transient receptor potential channels [36]. These processes are clearly involved in cell activation, although whether all of these or similar mechanisms are activated in CD45⁺/Col1⁺ cells by osmolality requires further study.

Following high glucose stimulation of human CD45⁺/Col1⁺ cells in vitro, an induction of CCR2 mRNA and a CCR2-mediated increase in the production of pro-COL1A1, TGF-β₁, and CCL2 were detected. These findings are consistent with a previous study, which demonstrated that undifferentiated human fibrocytes do not express CCR2 without specific treatment [37]. The up-regulation of CCR2 expression under high glucose concentrations was associated with a further increase in the production of pro-COL1A1, TGF-β₁ and CCL2 and in the extent of cell migration by exogenous CCL2 than by high glucose alone, suggesting that fibrocytes may contribute directly to the pathogenesis of organ fibrosis under diabetes through the CCL2/CCR2 signaling pathway.

In conclusion, CD45⁺/Col1⁺ cells are directly involved in the fibrogenesis under diabetic conditions via a CCL2/CCR2-dependendent amplification mechanisms. Within the context of the role of the CCL2/CCR2 system in the induction of monocyte/macrophage infiltration and the activation of constituent cells in various organs including the kidney [11, 38], it should be noted that similar trafficking and activation phenomena occur in atherosclerosis [39], which is another major complication of diabetes. Taken together, these findings suggest that pharmacologic CCR2 inhibition may be a potential therapy for diabetic complications including nephropathy.

Acknowledgments This study was supported by grants from the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST); Takeda Science Foundation; the Ministry of Education, Science, Sports, and Culture; and Diabetic Nephropathy Research from the Ministry of Health, Labor and Welfare of Japan.

Conflict of interest The authors have declared that no conflict of interest exists.

References

