KURAに登録されているコンテンツの著作権は、執筆者、出版社（学協会）などが有します。
KURAに登録されているコンテンツの利用については、著作権法に規定されている私的使用や引用などの範囲内で行ってください。
著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には、著作権者の許諾を得てください。ただし、著作権者から著作権等管理事業者（学術著作権協会、日本著作出版権管理システムなど）に権利委託されているコンテンツの利用手続については、各著作権等管理事業者に確認してください。
Cardiac 123I-MIBG Imaging for Clinical Decision Making: 22-year Experience in Japan

Kenichi Nakajima* and Tomoaki Nakata**
*Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan **Cardiology Department, Hakodate Goryoukaku Hospital, Hakodate, Japan

Correspondence
(Authors contributed equally)
Kenichi Nakajima, MD, PhD
Department of Nuclear Medicine, Kanazawa University Hospital
13-1 Takara-machi, Kanazawa, 920-8641, Japan, Phone: +81-76-265-2333, Fax: +81-76-234-4257, E mail: nakajima@med.kanazawa-u.ac.jp

Tomoaki Nakata, MD, PhD
Hakodate Goryoukaku Hospital, Vice-director, Cardiology Department
Associate Clinical Professor of Internal Medicine, Sapporo Medical University School of Medicine
Goryoukaku-Chou 38-3, Hakodate 040-8611, Hokkaido, Japan, Phone: +81-138-51-2295, Fax: +81-138-56-2695, E-mail: tnakata@sapmed.ac.jp

Short Running title: Cardiac 123I-MIBG imaging for clinical decision-making

Abstract
Cardiac neuroimaging with 123I-metaiodobenzylguanidine (MIBG) has been officially used in clinical practice in Japan since 1992. The nuclear cardiology guidelines of the Japanese Circulation Society revised in 2010 recommend cardiac 123I-MIBG imaging for the management of heart failure (HF) patients, particularly for the assessment of HF severity and prognosis of HF patients. Consensus in North American and European countries regarding incorporation into clinical practice, however, has not been established yet. This article summarizes 22 years of clinical applications in Japan of 123I-MIBG imaging in the field of cardiology, which are reflected in cardiology guidelines, including recent methodological advances. A standardized cardiac 123I-MIBG parameter, heart-to-mediastinum ratio (HMR), is the basis for clinical decision-making and enables common use of parameters beyond differences in institutions and studies. A number of clinical studies unanimously demonstrated its potent independent roles for prognosis evaluation and risk stratification irrespective of HF etiologies. An HMR of less than 1.6 -1.8 and an accelerated washout rate are recognized as high-risk indicators of pump-failure death, sudden cardiac death and fatal arrhythmias, and have independent and incremental prognostic values together with known clinical variables such as left ventricular ejection fraction and brain-type natriuretic peptide. Another possible use of this imaging technique has been strongly suggested for selecting therapeutic strategy, such as pharmacological and non-pharmacological treatments, using an implantable cardioverter defibrillator and/or cardiac resynchronization device; however, this possibility remains to be investigated. Recent multiple-cohort database analyses definitively demonstrated that patients at a low risk for lethal events who are defined by 123I-MIBG HMR >2.0 have a good long-term prognosis. Future investigations of cardiac 123I-MIBG imaging will contribute to better risk stratification of low and high-risk populations, to the establishment of cost-effective use of this imaging technique for the management of HF patients, and to world-wide acceptance of this imaging technique in clinical cardiology practice

Key Words:
123I-metaiodobenzylguanidine (MIBG), scintigraphic technique, heart failure, risk stratification, prognosis
Multicenter studies using 123I-metaiodobenzylguanidine (MIBG) in North America, Europe and Japan recently demonstrated the prognostic efficacies of this neuroimaging technique (1-3). Japan has 22 years of experience in 123I-MIBG imaging in clinical cardiology practice. A number of single-center studies have clarified the clinical implications of cardiac 123I-MIBG imaging, which can depict noradrenaline uptake and release processes. In 1980, 131I-MIBG imaging first started as adrenal medullary imaging. In 1987, Daichi Radioisotope Laboratory (FujiFilm RI Pharma, Co. Ltd, Tokyo, Japan, at present) performed a clinical trial of 123I-MIBG (MyoMIBG^TM) for imaging of the heart, after which the Japanese Ministry of Welfare (Ministry of Health, Labour and Welfare at present) approved the clinical use of 123I-MIBG in cardiology practice in 1992. Thereafter, Japan had a robust clinical experience dealing with heart diseases during these two decades, including ischemic heart disease, arrhythmia, idiopathic dilated cardiomyopathy, hypertrophic cardiomyopathy and cardiomyopathies secondary to diabetes, renal failure and other metabolic disorders. A majority of cardiac MIBG imaging, however, has been performed most effectively for chronic heart failure (HF), and their achievements are summarized in the Japanese Circulation Society’s Guidelines: Guidelines for Clinical Use of Cardiac Nuclear Medicine (2010, English digest version 2012) (4).

In the 1990’s, 123I-MIBG imaging was applied to neurological indications such as Lewy-body diseases, which includes Parkinson disease, dementia with Lewy bodies and pure autonomic failure. Since then, MIBG imaging has contributed to effective identification of Lewy-body involvement in the heart. Neurological experiences in the past decade and incorporation into the Japanese neurological guidelines have facilitated the clinical use of 123I-MIBG in this field (5), resulting in official approval by Japanese social health insurance. In 1993, 131I-MIBG was approved in the field of oncology, and the clinical indications of 123I-MIBG included neuroblastoma and pheochromocytoma at present.

This review surveys a history of cardiac 123I-MIBG imaging, recent advances in standardization of this imaging technique, and major achievements in cardiology. Lastly we discuss the possible efficacies and future directions for clinical decision-making in the management of HF.

Number of MIBG studies in Japan

The utility of 123I-MIBG since 2000 is summarized in the Report of the Nationwide Survey “The Present State of Nuclear Medicine Practice by Japanese Radioisotope Association”. The number of myocardial perfusion imaging with single-photon emission computed tomography (SPECT) was about 300,000 studies per year, while approximately 40,000 studies were performed for 123I-MIBG. According to data from another report (Reports on Survey of the Adverse Reaction to Radiopharmaceuticals (2002-2012), http://www.jsnm.org/system/files/k-51-I-01.pdf) the annual number of 123I-MIBG studies was 33,000 for heart and 4,000 for oncology, and the increase in 123I-MIBG studies was +12% from 2011 to 2012 (Figure 1). The use of 123I-MIBG in HF is estimated to be approximately 10,000 studies per year. At a multi-modality era, the use of myocardial perfusion SPECT has slightly decreased in recent years in Japan, but it is noteworthy that the use of MIBG imaging has been gradually increasing.

Clinical use of 123I-MIBG leading to Japanese nuclear cardiology guidelines

In the field of cardiology, the utility of MIBG was applied to ischemic heart disease, and high sensitivities for the detection of myocardial ischemia were reported. After early success of coronary revascularization in patients with acute coronary syndrome, salvaged myocardium could be visualized as denervated but viable tissue in an area at risk by MIBG SPECT (6,7). Cardiac 123I-MIBG imaging was also used for the identification of repeated ischemia due to coronary artery spasm (8,9). The applications of cardiac 123I-MIBG imaging are possibly useful for the detection of undetermined, unstable or recurrent ischemia without a stress test. The low image quality and nonspecific abnormality of the inferior wall (a low specificity) on cardiac 123I-MIBG SPECT imaging, however, limits the application of this imaging technique for coronary artery disease. Stress myocardial perfusion imaging and myocardial fatty acid metabolism imaging with 123I-beta methyl iodophenyl pentadecanoic acid are more widely preferred for detecting myocardial ischemia or ischemia-related myocardial injury in Japan, based on the Japanese Circulation Society guidelines of nuclear imaging. Cardiac 123I-MIBG imaging plays a unique and pivotal position in clinical heart failure practice. While ischemic HF is the most common etiology of HF in western countries, in Japan non-ischemic HF is more common (2). Non-ischemic dilated cardiomyopathy has been one of the important applications of cardiac 123I-MIBG imaging since the 1990s in Japan, although it is also important in North America and Europe (10-12). Regardless of HF etiology, reduced cardiac 123I-MIBG activity quantified as heart-to-mediastinum ratio (HMR) has been shown consistently to indicate poor cardiac survival. As discussed later, cardiac 123I-MIBG imaging can evaluate pharmacological effects of inhibitors of the beta-adrenoceptor function and renin-angiotensin-aldosterone system, showing good efficacies of these drugs parallel to the improvement in HMR and 123I-MIBG washout rate (WR) in responders. Hypertrophied myocardium has reduced 123I-MIBG activity relative to perfusion tracer uptake together with increased 123I-MIBG clearance in patients with hypertrophic cardiomyopathy (13). A diabetic heart is also likely to have impaired 123I-MIBG activity (low HMR and 123I-MIBG defect) in association with disease progression (14). Table 1 summarizes major investigations that prospectively followed up chronic HF patients for more than 2 years with an endpoint of cardiac death (13-25).

Table 2 shows pooled or multicenter analysis in Japan, North America and Europe. Based on the clinical applications of 123I-MIBG and literature from Europe, North America and Japan, the Japanese Circulation Society published the Guidelines for Clinical Use of...
Cardiac Nuclear Medicine in 2005 and revised them in 2010 by reviewing recent achievements (Table 3) (4).

Recommended protocols in Japan
Acquisition protocol
An 123I-MIBG scan is performed 15-30 minutes (early) and 3-4 hours (late) after the tracer injection. A commonly used dose of 123I-MIBG in Japan is 111 MBq, less than the recommended dose (111-370 MBq) in the USA and Europe (26). A planar image is obtained from an anterior view for 3 to 10 minutes using an energy window centered on 159 keV and a window width of 20% or 15%. When possible, tomographic data are subsequently acquired for the differential diagnosis and detection of localization of 123I-MIBG defects in coronary artery disease and neurodegenerative disorder such as Lewy-body related diseases (3). Cardiac 123I-MIBG activity is affected by the imaging condition, particularly a collimator type; HMR obtained by a medium-energy (ME) collimator is greater than that by a low-energy (LE) one.

Parameters from 123I-MIBG study
HMR is the most widely used 123I-MIBG parameter for the measurement of whole myocardial activity. A cardiac region of interest (ROI) is set manually over the heart without overlapping lung and liver activities, and with a rectangular mediastinal ROI as a background (26). The reproducibility of HMR is good as long as it is used in the same institution (27), although variability is observed depending on selections of ROI size and location and operator’s experience. Recently, software (smartMIBG, Fujifilm RI Pharma, Co. Ltd, Japan) has become available for semiautomatic ROI settings and calculations of HMR and WR (28). The software algorithm uses a circular heart ROI and a mediastinal ROI with a 10% width of the body and a 30% height of the mediastinum. HMR is calculated as an average heart count per pixel divided by an average mediastinal count per pixel. Washout rate (WR) is also calculated for evaluating sympathetic tone or drive as follows:

$$
WR=\frac{[(H_{\text{early}}-M_{\text{early}})-(H_{\text{late}}-M_{\text{late}})\times k]}{H_{\text{early}}-M_{\text{early}}} \times 100 \%
$$

where H_{early} and H_{late} are average heart counts and M_{early} and M_{late} are average mediastinal counts at early and late scans, respectively. The coefficient k is a time-decay correction factor of $0.5^{5(t/13)^{1/2}}$ for time t (h), and if the interval between the scans is 3 hours, k is 1.17. Ideally the tracer kinetic (WR) can be estimated precisely by using both background and physical-decay corrections. These corrections, however, are not necessarily performed routinely, and WR in the previous literature should be carefully interpreted in this context. Although no background subtraction may be used for less variability (27), our recommendation is to use background subtraction for consistency among various studies other than HF.

Regional vs. global, Planar vs. SEPCT
SPECT imaging can assess regional 123I-MIBG defects, which indicate viable but denervated, or injured myocardial tissue. The Japanese Society of Nuclear Medicine (JSNM) working group database is the first 123I-MIBG SPECT database created for 180-degree and 360-degree rotations in each gender (Figure 2) (29). However, there are several limitations in SPECT imaging. First, even in near-normal subjects, an inferior wall activity is often decreased, probably because of physiological change brought on by aging. Second, when cardiac 123I-MIBG activity is globally and markedly reduced as often seen in advanced heart failure, reconstruction of SPECT image and regional assessment using a scoring system are difficult to achieve. Third, in a highly dilated heart, non-specific inferior wall defects are observed probably because of attenuation artifacts. Finally, inferior wall defects are also observed in diabetic hearts. Thus, while regional assessment of 123I-MIBG distribution with a high-image quality is useful for the detection of localized denervation, it seems to be supplementary to the global assessment of 123I-MIBG activity in HF.

Normal values and standardization
Normal values
Standardization of HMR and WR is necessary for setting a normal value and optimal threshold for risk-stratification. In a survey using 12 sources from literature from Japan from 1994 to 2007, the means of early and late HMRs in the normal (control) groups ranged from 1.88 to 2.87 and from 1.84-2.49, respectively (references in supplementary file). In the normal JSNM databases, early and late HMRs are 2.39±0.21 and 2.49±0.25 for the LE collimator, and 2.76±0.31 and 3.01±0.35 for the ME collimator, respectively (29). Similarly, in 11 studies in Europe and the United States, late HMR ranged from 1.77 to 2.50 (references in supplementary file). Figure 2 shows mean normal HMR obtained with each collimator and standardized HMR from JSNM working group databases (n=62).

Standardization of HMR for prognostic evaluation
There are large variations in HMR value depending on a scinticamera, collimator, administration dose and specific activity of 123I-MIBG, and imaging protocol. In particular, high-energy photons in 123I, particularly the 529 keV photon (1.4%), result in numerical differences between measurements from LE- and ME-collimated images. Therefore, a dichotomous manner of risk-assessment (low- versus high-risk) using a HMR threshold may be questionable (30). However, it is critical and possible to standardize 123I-MIBG parameters (HMR and WR) for the clinical application in the management of HF. Figure 3 shows one of the promising processes for appropriate utilization of 123I-MIBG parameters, i.e. HMR, in the clinical decision-making in chronic HF patients. We proposed a calibration-phantom method to cross calibrate HMRs among institutions (31,32). Because HMRs between two camera-acquisition conditions have an approximately linear relation, a conversion formula between two systems can be determined using the cross-calibration phantom designed for the planar imaging. Using this calibration method, the conversion coefficient from an institutional HMR to the mathematically calculated reference value was measured in 225 experiments in 84
hospitals. The measured HMR was successfully converted to standardized HMR among institutions. Our proposal was to use the standardized HMR comparable to that obtained with the ME-type collimator, which is most fitted for 123I-tracer currently available for heart and brain studies. The standardization of HMR significantly improved risk classification based on HMR either with LE or ME collimators (32). HMRs published in several works of literature also can be changed to specific conditions. Provided that the ADMIRE-HF study showed the HMR threshold was 1.6 using the LEHR collimator (1), the threshold can be converted to 2.0 for the institution in which the ME general-purpose collimator is used. Figure 4 demonstrates the results of data conversion and incorporation of standardized HMR into the mortality risk model (2,33). Thus, this method enables calibration of data obtained by any kind of HMR, either by ME or LE collimators, contributing to universal application and comparison of HMR in the decision-making for selecting a therapeutic strategy.

Incremental clinical benefits of cardiac 123I-MIBG imaging in the HF

A number of works of literature have demonstrated independent and incremental prognostic values of cardiac 123I-MIBG imaging in chronic HF patients in combination with clinical information, such as a history of myocardial infarction, New York Heart Association (NYHA) functional class, left ventricular ejection fraction (LVEF), plasma brain natriuretic peptide (BNP) level and co-existing non-cardiac conditions as diabetes mellitus, impaired kidney function and anemia (2,10,15,19,20,25,34-36). The prognostic value is also shown irrespective of etiologies (ischemic or non-ischemic) of HF and LVEF (Figure 5) (35). Cardiac 123I-MIBG imaging can help cardiologists risk-stratify patients, select therapeutic strategy and predict long-term survival in chronic HF patients more precisely. Recent results from the multicenter studies (1-3) strengthened the previous findings demonstrating that cardiac 123I-MIBG imaging can risk-stratify (low-risk versus high-risk for lethal events) patients with HF and predict the probability of long-term survival with pharmacological or non-pharmacological treatments.

Pharmacological treatment and cardiac 123I-MIBG imaging

Because of the definitive mortality improvement, beta-blockers and renin-angiotensin-aldosterone system inhibitors are widely accepted in patients with asymptomatic and symptomatic chronic HF. Risk reduction rates for cardiac mortality by these medications, however, are still limited, that is roughly 20% to 30%. In real-world practice, some chronic HF patients do not necessarily meet entry criteria used in major drug-interventional HF studies or often have co-existing or unexpected non-cardiac diseases affecting clinical outcomes. Some chronic HF patients cannot sufficiently benefit from these drug treatments as non-responders or due to intolerance or adverse effects to these drugs, and physician’s preference sometimes results in under-use or under-dose of these drugs. It is, therefore, highly desirable to establish a method to appropriately identify patients who sufficiently respond and tolerate contemporary drug therapy beyond physician’s preference or experience. Although only a few studies have been conducted (11,37-46), cardiac 123I-MIBG imaging can monitor effects of drug treatment using beta-blocking agents, renin-angiotensin-aldosterone inhibitors or their combinations by correlating an increase in cardiac 123I-MIBG activity (HMR) and a decrease in 123I-MIBG WR with the improvement in NYHA functional class, LVEF or exercise tolerance.

Despite the data, It is more crucial to predict therapeutic efficacy and outcome improvement before the initiation of drug intervention. Patients with preserved cardiac HMR of 1.8 or more are shown to be tolerant to a metoprolol titration dose and the findings were more likely to be related to subsequent improvement in cardiac function during a 3-month interval together with a reduction in plasma noradrenaline concentration (39). In 167 chronic HF patients (43), treatment with ACE inhibitors and/or beta-blockers significantly reduced cardiac death prevalence and a 5-year cardiac mortality rate compared to that without these drugs (15% vs 37% and 21% vs 42%, p<0.05, respectively), and a risk reduction rate at 5 years in patients with HMR of 1.53 or more was significantly greater than that in those with HMR of less than 1.53 under the contemporary drug treatment (67% vs 32%, respectively; p<0.05). Thus, current optimal drug treatment can improve a survival rate, but the efficacy on clinical outcomes is likely to depend on cardiac 123I-MIBG activity, strongly suggesting that cardiac 123I-MIBG activity cannot only estimate drug effects but also predict cardiac risk improvement by appropriate drug treatment.

Needs for a new risk-stratification method in device treatment

There are inherent limitations in contemporary drug treatment, that is, some patients are originally non-responders or cease to respond to the contemporary drug therapy during a clinical course. Non-pharmacological device treatment has evolved to definitively improve symptoms, the quality life and outcomes for such patients with refractory HF. An implantable cardioverter defibrillator (ICD) can ablate lethal ventricular tachyarrhythmias and reduce sudden cardiac death (SCD) risk. Cardiac resynchronization therapy (CRT) using biventricular pacemakers can effectively reduce recurrent hospitalization and mortality risk in patients with prominent left bundle branch block and advanced systolic HF refractory to optimal drug treatment. CRT combined with ICD (CRTD) can reduce all-cause mortality, cardiac death and recurrence of symptomatic aggravation and hospitalization in patients with advanced HF in NYHA class 3-4 and severe intra-ventricular dyssynchrony (47). In addition to the secondary prevention of SCD or lethal arrhythmic events, the most accepted ICD indication for primary prevention of SCD is based on chronic HF presenting with prior myocardial infarction, NYHA class 2-3 and LVEF of 35% or less.

As introduced in major guidelines, continuous growth of the patient number and a robust amount of evidence relating to the efficacies of device therapy have
facilitated prophylactic use of ICD, CRT and CRTD in other developed countries as well as in Japan. It is known, however, that a large percentage of ICD devices are unlikely to deliver appropriate therapy during their lifetime, and nearly one third of patients ineligible for an ICD (LVEF > 35%) die of SCD. Likewise, clinical efficacies of CRT are limited in patients who have mild to moderate chronic HF (NYHA class 1-2), do not have a prolonged QRS duration of greater than 120 msec, or do not have reduced LVEF. Some patients cannot respond adequately to or might be ineligible (at a really low risk) for the device treatment even when patients meet currently available standard indication criteria. Conversely, even when the patients are outside the indication criteria, some patients might die of SCD (consequently at high risk) and are eligible for the treatment. Besides device-related problems, the increasing need for medical resources, which are becoming limited, heightens the need to establish more appropriate identification - beyond that provided by conventional clinical markers - of patients who have chronic HF and are most likely or unlikely to benefit from device treatment in a cost-effective fashion (48-51).

Cardiac 123I-MIBG imaging in device treatment

The Department of Japanese Government Social Insurance officially approved ICD use in 1996, CRT in 2004, and CRTD in 2006. Thereafter, several small but important studies (22,52-58) have shown that excess activation of cardiac sympathetic nerve function and impaired cardiac sympathetic innervation assessed by cardiac 123I-MIBG imaging are associated with arrhythmogenicity leading to lethal ventricular arrhythmias, ICD shock against lethal arrhythmic events and SCD independently of clinical, electrophysiological and LVEF (59). In addition to the assessment of BNP, LVEF and myocardial viability, cardiac 123I-MIBG activity is used for the prognosis assessment and selection of therapeutic strategy in our institutes (56,57). The incremental prognostic values of this imaging technique are also supported by larger studies (60,61) and by the positron emission tomography (PET) study using 11C-meta-hydroxyephedrine (HED) (62). Cardiac 123I-MIBG imaging has additive values to clinical information assessed by Seattle Heart Failure Model in high-risk candidates for ICD, CRT or CRTD (61); and arrhythmic death or appropriate ICD discharge for lethal ventricular arrhythmias correlates with amounts of denervated myocardium (62). In response to CRT, cardiac 123I-MIBG activity improves together with symptomatic and functional improvement, and baseline cardiac 123I-MIBG activity correlates with CRT effects (63-66). More recently, cardiac 123I-MIBG activity is shown to be closely associated with mechanical dyssynchrony assessed by a speckle-tracking strain technique and 123I-MIBG HMR of 1.6 is likely to be a cut-off value for predicting response to CRT and long-term outcomes in combination with dyssynchrony in Japanese patients (67). Thus, cardiac 123I-MIBG imaging enables cardiologists to help identify patients who are most susceptible to lethal arrhythmias and event risks and who can actually benefit most from the device therapy by overcoming the limitations of current device therapy criteria, a majority of which consist of surrogate markers of lethal events such as symptoms (NYHA class), clinical backgrounds, LVEF and QRS prolongation (intra-ventricular electrical dyssynchrony).

Cardiac 123I-MIBG imaging in heart transplantation

Heart transplantation for patients with terminal HF improves survival rates at 1- and 5 years, up to nearly 90% and 70%, respectively. Because of a limited number of heart donors, however, the precise indication, the order of priority and appropriate timing of operation are crucial clinical issues. Historically, due to delayed national consensus on this treatment and due to few donors, Japan has much less experience with heart transplantation per se compared to other countries and, therefore, has no significant clinical data using cardiac 123I-MIBG imaging on this treatment. Nevertheless, cardiac 123I-MIBG imaging possibly contributes to improvement in determination of the necessity of heart transplantation and expected survival interval than other standard parameters (3,12,68,69) in an era when advance device therapy combined with optimal drug treatment and cardiac 123I-MIBG imaging are available. Cardiac 123I-MIBG imaging may be also useful for the assessment of re-innervation in transplanted hearts. Cardiac neuroimaging using 11C-HED or 123I-MIBG identifies ventricular sympathetic reinnervation (70-72), which slowly develops from the cardiac base several months after surgery and is observed in 40% of heart-transplanted patients one year after the operation (73). Although clinical implications and mechanisms of the cardiac reinnervation process are not necessarily revealed, restoration of cardiac sympathetic innervation is likely to increase exercise capacity by improving blunted physiologic response of heart rate and contractile function to exercise in patients with heart transplantation (73). Assessment of the cardiac reinnervation process by cardiac 123I-MIBG imaging may be useful for the management of patients with heart transplantation in an outpatient care unit, by determining the appropriate exercise prescription, evaluating the exercise training effect and, hopefully, predicting improvement in long-term survival.

Identification of low-risk patients with HF

Cost-effective treatment is generally a risk-based selection of therapeutic strategy. Precise identification of patients at low risk for lethal outcomes can contribute to appropriate use of medical resources by minimizing diagnostic examinations, selecting a low-cost but effective treatment appropriately and restraining from over-use of high-cost intervention in patients who are not so likely to benefit from a high-cost, invasive treatment. Previous investigations show that the cut-off value for differentiating high- from low-risk patients is likely from around 1.60 to 1.75 (1-3,15). Furthermore, the recent multicenter results from more than 600 to 1,300 chronic HF patients (1-3) definitively demonstrated the ability of cardiac 123I-MIBG imaging for the identification of low-risk patients who can survive over several years
independently of conventional prognostic markers (Figure 6). In the Japanese study (2,33), annual all-cause mortality was less than 2% in patients with HMR≥2.0, and a mortality rate at 5 years was nearly 8% in patients with HMR≥2.0 and 10% to 15% in patients with HMR between 1.7 and 2.0. Likewise, a mortality rate at 5 years was less than 3% in patients with HMR≥1.76 and nearly 15% in patients with HMR between 1.33 and 1.75 in the European study (3). What is noted here is that HMR cut-off values are different among the studies (1-3). As discussed above, this is because of the differences in patient backgrounds and, more importantly, because of technical differences in cardiac 123I-MIBG imaging (32). Nevertheless, cardiac 123I-MIBG activity quantified as HMR correlates consistently with a survival rate during a 5-year period or more over a wide range of HMR from less than 1.1 to 2.1 or more (2). Thus, these findings and recent advances in standardization of cardiac 123I-MIBG imaging presented in this article can facilitate clinical use of the quantitative 123I-MIBG parameter (HMR) for defining a low-risk probability of lethal events over 5 years (33), for the differentiating high- and low-risk patients and for anticipating a survival time in each chronic HF patient.

Limitations and future direction of cardiac 123I-MIBG imaging
A growing body of evidence of cardiac 123I-MIBG imaging demonstrates great potential in helping select patients who are most eligible for advanced contemporary treatment rather than for treatment through conventional methods. Further investigations, however, are needed to strengthen prior findings and reassurance for precise risk-stratification and decision-making on the selection of non-pharmacological device treatment, including the prediction of responsiveness to the treatment. The increasing number of chronic HF patients will limit medical costs and application of device/heart transplantation treatment in patients at a lower risk or who are less likely to sufficiently benefit from the treatment in the future. More experience in cardiac 123I-MIBG imaging is needed to improve negative and positive predictive values for better differentiation of low-risk and high-risk patients, which will contribute to effective use of medical resources. Unlike in Japan, the utility of this imaging technique is still less obvious in other countries for recommendation into international guidelines, yet there are still insufficient data relating to cost-effectiveness and limited availability in cardiology practice. Future large-scale prospective multicenter studies would establish a practical and cost-effective utilization of cardiac 123I-MIBG imaging in combination with clinical information in chronic HF patients to help clinicians optimize patient care (Table 4).

Acknowledgement
This work was partly supported by the working group activity of the Japanese Society of Nuclear Medicine and by Grants-in-Aid for Scientific Research in Japan (P. I. Kenichi Nakajima). The authors would like to thank Arnold Jacobson, MD, for his comments on this manuscript, and Mr. Ronald G. Belisle for his editorial assistance.

Conflict of Interest
KN has collaborative research works with FUJIFILM RI Pharma, Co. Ltd Japan, which supplies 123I-MIBG in Japan.

References

Figure 1
The number of 123I-MIBG studies performed since 2000 (A) and its breakdown in 2012 (B) in Japan.
Figure 2
Normal values of HMR (A), washout rate (B) and polar maps (C) based on JSNM working group databases. Italic numbers in bars indicate normal ranges.
Figure 3
Standardization of cardiac 123I-MIBG activity quantified as heart-to-mediastinum ratio (HMR) by converting data obtained using a low-medium-energy (LME) collimator to those using a low-energy high-resolution (LEHR) collimator. A: a 32-year old male with 22% of left ventricular ejection fraction (LVEF) and NYHA class III. The HMR was converted from 1.36 in a LME collimator to 1.23 in a LEHR collimator and a 5-year mortality rate was re-estimated to be more than 50% (10%/year). B: an 86-year old woman with LVEF 51% of and NYHA class II. Her HMR was converted from 2.33 to 1.88 and a 5-year mortality rate was re-calculated to be 10% (2%/year).
Figure 4
Standardization process of cardiac 123I-MIBG data for the calculation of heart (H)-to-mediastinum (M) ratio (HMR), risk-stratification and risk-based decision making in the management of chronic HF.
Figure 5
Cumulative mortality curves comparing patients with idiopathic dilated cardiomyopathy (A) or coronary artery disease (B) when cutoff-values of HMR 1.70 and LVEF 35% were used in Japanese pooled database (2).
Figure 6
Low risk of mortality in subjects with HMR >2.0. All-cause mortality curves for 10 years in Japanese pooled databases (n=1322) (2), indicating a low probability of lethal events independently of left ventricular ejection fraction (LVEF) when 123I-MIBG heart-to-mediastinum ratio (HMR) is more than 2.0 (A). Cardiac mortality curves at 5 years estimated by the logistic model of 123I-MIBG HMR (n=933) (33), indicating a low probability of lethal events independently of age-difference when 123I-MIBG HMR is more than 2.0 (B).
Table 1. 123I-MIBG prognostic study in Japan with an endpoint of death

<table>
<thead>
<tr>
<th>Author [Ref]</th>
<th>Year</th>
<th>No. of patients (male)</th>
<th>Subjects included</th>
<th>Follow-up (mean or median)</th>
<th>MIBG HMR threshold</th>
<th>WR threshold</th>
<th>Multi-variate analysis</th>
<th>Endpoint</th>
<th>Cardiac events</th>
<th>Cardiac CD rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imamura [16]</td>
<td>2001</td>
<td>171 (125)</td>
<td>cardiomyopathy (DCM n=96 with LVEF<40%)</td>
<td>27 months</td>
<td>63%</td>
<td>MIBG WR, BNP</td>
<td>CD, Progressive HF</td>
<td>CD 11, SCD 5</td>
<td>6.4%</td>
<td></td>
</tr>
<tr>
<td>Ogita [17]</td>
<td>2001</td>
<td>79 (64)</td>
<td>Choric HF with LVEF<40%</td>
<td>31 months</td>
<td>27%</td>
<td>MIBG WR</td>
<td>Death, Progressive HF</td>
<td>CD 23, CD 13</td>
<td>16.5%</td>
<td></td>
</tr>
<tr>
<td>Matsui [18]</td>
<td>2002</td>
<td>85 (59)</td>
<td>DCM with LVEF<45%, repeat MIBG measurement</td>
<td>24 months</td>
<td>1.89, Change of HMR after treatment</td>
<td>BNP, Change of HMR</td>
<td>CD, Progressive HF</td>
<td>CD 12/74</td>
<td>16.2%</td>
<td></td>
</tr>
<tr>
<td>Nakata [19]</td>
<td>2003</td>
<td>205 (145)</td>
<td>LVEF<50%</td>
<td>35 months</td>
<td>1.74</td>
<td>38% HMR, diabetes, nitrate, NYHA class</td>
<td>CD</td>
<td>CD 38, 11 SCD</td>
<td>18.5%</td>
<td></td>
</tr>
<tr>
<td>Kyuma [20]</td>
<td>2004</td>
<td>158 (110)</td>
<td>Choric HF</td>
<td>16 months</td>
<td>1.74</td>
<td>BNP</td>
<td>CD</td>
<td>CD 17, SCD 2</td>
<td>10.8%</td>
<td></td>
</tr>
<tr>
<td>Arimoto [21]</td>
<td>2007</td>
<td>104 (67)</td>
<td>Early stage HF</td>
<td>12.5 months</td>
<td>1.73</td>
<td>H-FABP, HMR</td>
<td>CD</td>
<td>CD 8, SCD 3</td>
<td>7.7%</td>
<td></td>
</tr>
<tr>
<td>Tamaki [22]</td>
<td>2009</td>
<td>106 (81)</td>
<td>Choric HF with LVEF<40%</td>
<td>65 months</td>
<td>27%</td>
<td>MIBG WR, EF</td>
<td>SCD</td>
<td>ACD 38, CD 30, SCD 18</td>
<td>28.3%</td>
<td></td>
</tr>
<tr>
<td>Katoh [23]</td>
<td>2010</td>
<td>117 (64)</td>
<td>HFPEF, LVEF≥50%</td>
<td>34.2 months</td>
<td>26.5%</td>
<td>MIBG WR</td>
<td>CD, readmission due to HF</td>
<td>ACD 42 (CD 3)</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>Momose [24]</td>
<td>2011</td>
<td>86 (57)</td>
<td>DCM</td>
<td>110 months</td>
<td>1.45</td>
<td>50% HMR, LVEF</td>
<td>Death</td>
<td>ACD 26, CD 7, SCD 2</td>
<td>8.1%</td>
<td></td>
</tr>
<tr>
<td>Doi [25]</td>
<td>2012</td>
<td>468 (340)</td>
<td>Choric HF with LVEF<50%</td>
<td>60.5 months</td>
<td>1.57</td>
<td>NYHA class, HMR, hemoglobin, eGFR, dyslipidemia, nitrate</td>
<td>CD</td>
<td>CD 89</td>
<td>19.0%</td>
<td></td>
</tr>
</tbody>
</table>

ACD, all-cause death; CD, cardiac death; SCD, sudden cardiac death; HF, heart failure; FABP, Heart-type fatty acid binding protein; DCM, dilated cardiomyopathy; HFPEF, heart failure with preserved ejection fraction
Table 2. Pooled or multicenter analysis in Japan, North America and Europe

<table>
<thead>
<tr>
<th>Author [Ref]</th>
<th>Year</th>
<th>No. of patients (male)</th>
<th>Subjects included</th>
<th>Follow-up (mean or median)</th>
<th>MIBG HMR threshold</th>
<th>WR threshold</th>
<th>Multivariate analysis</th>
<th>Endpoint</th>
<th>Cardiac events</th>
<th>CD rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakata [2]</td>
<td>2013</td>
<td>1322 (942)</td>
<td>6 cohort studies, pooled data</td>
<td>77.6 months</td>
<td>1.68</td>
<td>43%</td>
<td>NYHA class, age, MIBG HMR, LVEF</td>
<td>Death</td>
<td>ACD 326, CD 263</td>
<td>24.7%</td>
</tr>
<tr>
<td>Jacobson [1]</td>
<td>2010</td>
<td>961 (770)</td>
<td>NYHA II-III with LVEF ≤ 35%</td>
<td>17 months</td>
<td>1.60</td>
<td>HMR, LVEF, NYHA class, BNP</td>
<td>Death, Progressive HF, life-threatening arrhythmia</td>
<td>ACD 81, CD 53, arrhythmia 64</td>
<td>5.5%</td>
<td></td>
</tr>
<tr>
<td>Vershure [3]</td>
<td>2014</td>
<td>636 (499)</td>
<td>8 studies for meta-analysis + 35 subjects</td>
<td>36.9 months</td>
<td>-</td>
<td>HMR, LVEF, (age for ACD)</td>
<td>Death, life-threatening arrhythmia, heart transplant</td>
<td>ACD 83, CD 67, arrhythmia 33, heart transplant 56</td>
<td>10.5%</td>
<td></td>
</tr>
</tbody>
</table>

ACD, all-cause death; CD, cardiac death; SCD, sudden cardiac death; HF, heart failure; FABP, Heart-type fatty acid binding protein; DCM, dilated cardiomyopathy; HFPEF, heart failure with preserved ejection fraction

<table>
<thead>
<tr>
<th>Indications</th>
<th>Classification of recommendation</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of severity and prognosis of heart failure</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Assessment of treatment effects of heart failure</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Arrhythmogenic disease</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

Class I, Conditions for which there is evidence and/or general agreement that a given test is useful and effective; Class II, Conditions for which there is conflicting evidence and/or a divergence of opinion about the usefulness of a test; IIa, Weight of evidence/opinion is in favor of usefulness; IIb, Weight of evidence/opinion is less established based on evidence or opinion; Level B, Verified by ≥2 multicenter randomized intervention trials on <400 patients, well-designed comparative studies, or large-scale cohort studies; Level C, Consensus opinion of specialists.

Table 4. Current tentative clinical use of cardiac 123I-MIBG imaging in heart failure (HF)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>Evaluation of severity of HF</td>
</tr>
<tr>
<td>Risk</td>
<td>Risk-stratification of HF: high-risk and low-risk assessment</td>
</tr>
<tr>
<td></td>
<td>Risk assessment of ventricular tachyarrhythmias and lethal arrhythmic events</td>
</tr>
<tr>
<td>Therapy</td>
<td>Evaluation of therapeutic effects of pharmacological and non-pharmacological treatment</td>
</tr>
<tr>
<td></td>
<td>Prediction of therapeutic response</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Prediction of long-term survival</td>
</tr>
</tbody>
</table>
Heart-to-mediastinum ratios in the control groups in the literature of Japan (1-12) and in Europe and USA (13-23) are listed.

